【题目链接】
【算法】
线性筛出不大于N的所有素数,枚举gcd(x,y)(设为p),问题转化为求(x,y)=p的个数
设x=x'p, y=y'p,那么有(x,y)=1且1≤x,y≤N/p
转化为求(x,y)=1且1≤x,y≤n的个数
求(x,y)=1且1≤x,y≤N的个数:
若x≥y,对于x=1..n,有ϕ(x)个y满足(x,y)=1
若x≤y,对于y=1..n,有ϕ(y)个x满足(x,y)=1
若x=y,只有一种情况:(x=1, y=1)
所以答案为2(ϕ(1)+...+ϕ(n))-1
线性筛筛出欧拉函数、预处理前缀和即可
【代码】
#include<bits/stdc++.h> using namespace std; typedef long long ll; const ll MAXN = 1e7; ll i,N,tot,ans; ll sum[MAXN+10]; int prime[MAXN+10],phi[MAXN+10]; template <typename T> inline void read(T &x) { ll f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; } for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } template <typename T> inline void write(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) write(x/10); putchar(x%10+'0'); } template <typename T> inline void writeln(T x) { write(x); puts(""); } inline void sieve(ll n) { ll i,j,tmp; static ll f[MAXN+10]; phi[1] = 1; for (i = 2; i <= n; i++) { if (!f[i]) { prime[++tot] = f[i] = i; phi[i] = i - 1; } for (j = 1; j <= tot; j++) { tmp = i * prime[j]; if (tmp > n) break; f[tmp] = prime[j]; phi[tmp] = (prime[j] - (prime[j] < f[i])) * phi[i]; if (f[i] == prime[j]) break; } } } int main() { read(N); sieve(N); for (i = 1; i <= N; i++) sum[i] = sum[i-1] + phi[i]; for (i = 1; i <= tot; i++) ans = ans + 2 * sum[N/prime[i]] - 1; writeln(ans); return 0; }