• LC 802. Find Eventual Safe States


    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.

    Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node.  More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.

    Which nodes are eventually safe?  Return them as an array in sorted order.

    The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph.  The graph is given in the following form: graph[i] is a list of labels jsuch that (i, j) is a directed edge of the graph.

    Example:
    Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
    Output: [2,4,5,6]
    Here is a diagram of the above graph.
    

    Runtime: 268 ms, faster than 12.50% of C++ online submissions for Find Eventual Safe States.

    slow

    class Solution {
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> indegree(graph.size(),0);
        vector<int> outdegree(graph.size(), 0);
        unordered_map<int,vector<int>> parent;
        for(int i=0; i<graph.size(); i++){
          for(int j=0; j<graph[i].size(); j++){
            indegree[graph[i][j]]++;
            outdegree[i]++;
            parent[graph[i][j]].push_back(i);
          }
        }
        queue<int> q;
        unordered_map<int,bool> used;
        for(int i=0; i<graph.size(); i++) used[i] = false;
        while(true) {
          for(int i=0; i<outdegree.size(); i++) {
            if(outdegree[i] == 0 && !used[i]) {
              q.push(i);
            }
          }
          if(q.empty()) break;
          while(!q.empty()) {
            int tmp = q.front(); q.pop();
            used[tmp] = true;
            for(int x : parent[tmp]) {
              outdegree[x]--;
            }
          }
        }
        vector<int> ret;
        for(int i=0; i<outdegree.size(); i++){
          if(outdegree[i] == 0) ret.push_back(i);
        }
        return ret;
      }
    };

    Runtime: 140 ms, faster than 100.00% of C++ online submissions for Find Eventual Safe States.

    class Solution {
    
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> color(graph.size(),0);
        vector<int> ret;
        for(int i=0; i<graph.size(); i++){
          if(dfs(graph, i, color)) ret.push_back(i);
        }
        return ret;
      }
    
      bool dfs(vector<vector<int>>& graph, int s, vector<int>& color) {
        if(color[s] > 0) return color[s] == 2;
        color[s] = 1;
        for(int& x : graph[s]) {
          if(!dfs(graph, x, color)) return false;
        }
        color[s] = 2;
        return true;
      }
    };
  • 相关阅读:
    详述@Responsebody和HTTP异步请求的关系
    利用synchronized解析死锁的一种形成方式
    初识Spring JdbcTemplate
    初识SpringIOC
    JasperReport框架使用教程(附带常见空白页问题说明)
    LeetCode~1033.移动石子直到连续
    LeetCode~941.有效的山脉数组
    LeetCode~344. 反转字符串
    Job for network.service failed because the control process exited with error code问题
    LeetCode~报数(简单)
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10285718.html
Copyright © 2020-2023  润新知