• LC 656. Coin Path 【lock, Hard】


    Given an array A (index starts at 1) consisting of N integers: A1, A2, ..., AN and an integer B. The integer B denotes that from any place (suppose the index is i) in the array A, you can jump to any one of the place in the array A indexed i+1i+2, …, i+B if this place can be jumped to. Also, if you step on the index i, you have to pay Ai coins. If Ai is -1, it means you can’t jump to the place indexed i in the array.

    Now, you start from the place indexed 1 in the array A, and your aim is to reach the place indexed Nusing the minimum coins. You need to return the path of indexes (starting from 1 to N) in the array you should take to get to the place indexed N using minimum coins.

    If there are multiple paths with the same cost, return the lexicographically smallest such path.

    If it's not possible to reach the place indexed N then you need to return an empty array.

    Example 1:

    Input: [1,2,4,-1,2], 2
    Output: [1,3,5]
    

     

    Example 2:

    Input: [1,2,4,-1,2], 1
    Output: []
    

     

    Note:

    1. Path Pa1, Pa2, ..., Pan is lexicographically smaller than Pb1, Pb2, ..., Pbm, if and only if at the first iwhere Pai and Pbi differ, Pai < Pbi; when no such i exists, then n m.
    2. A1 >= 0. A2, ..., AN (if exist) will in the range of [-1, 100].
    3. Length of A is in the range of [1, 1000].
    4. B is in the range of [1, 100].

    参考了lee215的解答:

    设dp数组中dp[i]为到第i个位置最小花费,那么dp数组就可以求出来。递推公式为

    for i in 1 : len:

    dp[i] = min(dp[j] + A[i-1])  for j in range(max(0,j-B),j)

    大意就是从当前位置往回找B个位置,并把之前的花费和当前的A相加,求最小值。

    而又要返回字典序的最小index。在python中可以用min求数组的最小,就是字典序。

    Runtime: 236ms, beats 24.14% 时间复杂度(N*B*N),最后一个N是因为比较数组的时候,数组长度是N,空间复杂度(N*N)

    class Solution:
        def cheapestJump(self, A, B):
            """
            :type A: List[int]
            :type B: int
            :rtype: List[int]
            """
            if not A or A[0] == -1: return 0
            dp = [[float('inf')] for _ in A]
            dp[0] = [A[0], 1]
            for j in range(1, len(A)):
                if A[j] == -1: continue
                dp[j] = min([dp[i][0] + A[j]] + dp[i][1:] + [j+1] for i in range(max(0,j-B),j))
            return dp[-1][1:] if dp[-1][0] != float('inf') else []
            

    看来还能再优化,

    这是另一种解法,利用堆的性质,同样把花费和路径都放进堆中,每次取最小的一个花费,加上当前的花费再推进堆中。时间复杂度(N*log(B)*N),优化了选取的步骤,但堆中元素每一次比较花费的时间还是O(N)的。

    Runtime:68ms beats: 100%

    def cheapestJump(self, A, B):
            
            N = len(A)
            A = ['dummy'] + A
            if A[N] == -1: return []
            heap = [(A[N], [N])]
            new_path = [N]
            for i in range(N-1, 0, -1): # From N-1 sweeping to 1
                if A[i] == -1: continue
                
                while heap:
                    cost, path = heapq.heappop(heap)
                    if path[0] <= i + B: break #当前的index加上B后应该大于之前保存的路径的第一个,这样才能连的上。
    else: # exhausted heap without finding the previous path return [] new_cost = cost + A[i] new_path = [i] + path heapq.heappush(heap, (new_cost, new_path)) heapq.heappush(heap, (cost, path)) return new_path

    这题如果用C++,JAVA来做,没有python的min能比较数组或者tuple的性质就麻烦一点。

  • 相关阅读:
    10 Fresh & Free Bootstrap 5 Admin and Dashboard Templates 2022 辉
    非参数估计:核密度估计KDE 辉
    7个顶级静态代码分析工具 辉
    基于机器学习的用户实体行为分析技术在账号异常检测中的应用 辉
    Docker镜像扫描器的实现 辉
    Kubehunter:一个用于Kubernetes渗透测试的开源工具 辉
    九大顶级静态代码分析工具 辉
    Apache ab压力测试
    Insert into select 批量同步数据
    JVM 逃逸分析 同步缺省 标量替换 栈上分配
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10144225.html
Copyright © 2020-2023  润新知