• 深入理解HDFS的架构和原理


    (一) HDFS主要是用于做什么的? 


    1.       HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。它所具有的高容错、高可靠性、高可扩展性、高获得性、高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利。

    (二) HDFS的优缺点比较 
    HDFS 的优点:

    1、高容错性

    1)数据自动保存多个副本。它通过增加副本的形式,提高容错性

    2)某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关心。

    2、适合批处理

    1)它是通过移动计算而不是移动数据

    2)它会把数据位置暴露给计算框架。

    3、适合大数据处理

    1)处理数据达到 GB、TB、甚至PB级别的数据。

    2)能够处理百万规模以上的文件数量,数量相当之大。

    3)能够处理10K节点的规模

    4、流式文件访问

    1)一次写入,多次读取。文件一旦写入不能修改,只能追加。

    2)它能保证数据的一致性。

    5、可构建在廉价机器上

    1)它通过多副本机制,提高可靠性。

    2)它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。 

    HDFS 缺点(不适用适用HDFS的场景): 
    1、低延时数据访问 
    1)比如毫秒级的来存储数据,这是不行的,它做不到。

    2)它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。

    2、小文件存储 
    1)存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的。

    2)小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。


    3、并发写入、文件随机修改

    1)一个文件只能有一个写,不允许多个线程同时写。 
    2)仅支持数据 append(追加),不支持文件的随机修改。

    (三)HDFS 如何存储数据? 
    HDFS存储数据架构图: 
    这里写图片描述

    (备注:该图来源于http://hadoop.dajiangtai.com

          HDFS 采用Master/Slave的架构来存储数据,这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分。

    Client:就是客户端。

           1、文件切分。文件上传 HDFS 的时候,Client 将文件切分成 一个一个的Block,然后进行存储。

           2、与 NameNode 交互,获取文件的位置信息。

          3、与 DataNode 交互,读取或者写入数据。

           4、Client 提供一些命令来管理 HDFS,比如启动或者关闭HDFS。

           5、Client 可以通过一些命令来访问 HDFS。

    NameNode:就是 master,它是一个主管、管理者。

          1、管理 HDFS 的名称空间。

           2、管理数据块(Block)映射信息

           3、配置副本策略

          4、处理客户端读写请求。

    DataNode:就是Slave。NameNode 下达命令,DataNode 执行实际的操作。

           1、存储实际的数据块。

           2、执行数据块的读/写操作。

    Secondary NameNode:并非 NameNode 的热备。当NameNode 挂掉的时候,它并不能马上替换 NameNode 并提供服务。

           1、辅助 NameNode,分担其工作量。

          2、定期合并 fsimage和fsedits,并推送给NameNode。

           3、在紧急情况下,可辅助恢复 NameNode。

    (四) HDFS 如何读取文件? 
    HDFS 读取文件步骤图: 
    这里写图片描述

    HDFS的文件读取原理,详细解析如下:

         1、首先调用FileSystem对象的open方法,其实获取的是一个DistributedFileSystem的实例。

             2、DistributedFileSystem通过RPC(远程过程调用)获得文件的第一批block的locations,同一block按照重复数会返回多个locations,这些locations按照Hadoop拓扑结构排序,距离客户端近的排在前面。

         3、前两步会返回一个FSDataInputStream对象,该对象会被封装成 DFSInputStream对象,DFSInputStream可以方便的管理datanode和namenode数据流。客户端调用read方 法,DFSInputStream就会找出离客户端最近的datanode并连接datanode。

               4、数据从datanode源源不断的流向客户端。

              5、如果第一个block块的数据读完了,就会关闭指向第一个block块的datanode连接,接着读取下一个block块。这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流。

             6、如果第一批block都读完了,DFSInputStream就会去namenode拿下一批blocks的location,然后继续读,如果所有的block块都读完,这时就会关闭掉所有的流。 
    (五) HDFS 如何写入文件? 
    HDFS的文件写入步骤图: 
    这里写图片描述

    HDFS的文件写入原理详细步骤解析:

          1.客户端通过调用 DistributedFileSystem 的create方法,创建一个新的文件。

          2.DistributedFileSystem 通过 RPC(远程过程调用)调用 NameNode,去创建一个没有blocks关联的新文件。创建前,NameNode 会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过,NameNode 就会记录下新文件,否则就会抛出IO异常。

          3.前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装成 DFSOutputStream,DFSOutputStream 可以协调 NameNode和 DataNode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小packet,然后排成队列 data queue。

          4.DataStreamer 会去处理接受 data queue,它先问询 NameNode 这个新的 block 最适合存储的在哪几个DataNode里,比如重复数是3,那么就找到3个最适合的 DataNode,把它们排成一个 pipeline。DataStreamer 把 packet 按队列输出到管道的第一个 DataNode 中,第一个 DataNode又把 packet 输出到第二个 DataNode 中,以此类推。

          5.DFSOutputStream 还有一个队列叫 ack queue,也是由 packet 组成,等待DataNode的收到响应,当pipeline中的所有DataNode都表示已经收到的时候,这时akc queue才会把对应的packet包移除掉。

          6.客户端完成写数据后,调用close方法关闭写入流。

          7.DataStreamer 把剩余的包都刷到 pipeline 里,然后等待 ack 信息,收到最后一个 ack 后,通知 DataNode 把文件标示为已完成。

  • 相关阅读:
    [华为oj]放苹果
    [华为oj]iNOC产品部-杨辉三角的变形
    值传递和引用传递
    Struts2+Jquery+Json集成
    使用堆栈结构进行字符串表达式("7*2-5*3-3+6/3")的计算
    使用环形链表解决约瑟夫(丢手帕)问题
    tomcat配置数据源
    ORA-01652:无法通过128(在表空间TEMP中)扩展temp段
    (转)Java 代码优化过程的实例介绍
    (转)走进JVM,浅水也能捉鱼
  • 原文地址:https://www.cnblogs.com/estellez/p/10147993.html
Copyright © 2020-2023  润新知