• 【从传统方法到深度学习】图像分类


    1. 问题

    Kaggle上有一个图像分类比赛Digit Recognizer,数据集是大名鼎鼎的MNIST——图片是已分割 (image segmented)过的28*28的灰度图,手写数字部分对应的是0~255的灰度值,背景部分为0。

    from keras.datasets import mnist
    
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train[0] # .shape = 28*28
    """
    [[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
        0   0   0   0   0   0   0   0   0   0]
     ...
     [  0   0   0   0   0   0   0   0   0   0   0   0   3  18  18  18 126 136
      175  26 166 255 247 127   0   0   0   0]
     [  0   0   0   0   0   0   0   0  30  36  94 154 170 253 253 253 253 253
      225 172 253 242 195  64   0   0   0   0]
     ...
     [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
        0   0   0   0   0   0   0   0   0   0]]
    """
    

    手写数字图片是长这样的:

    import matplotlib.pyplot as plt
    
    plt.subplot(1, 3, 1)
    plt.imshow(x_train[0], cmap='gray')
    plt.subplot(1, 3, 2)
    plt.imshow(x_train[1], cmap='gray')
    plt.subplot(1, 3, 3)
    plt.imshow(x_train[2], cmap='gray')
    plt.show()
    

    手写数字识别可以看做是一个图像分类问题——对二维向量的灰度图进行分类。

    2. 识别

    Rodrigo Benenson给出50种方法在MNIST的错误率。本文将从传统方法过渡到深度学习,对比准确率来看。以下代码基于Python 3.6 + sklearn 0.18.1 + keras 2.0.4。

    传统方法

    kNN

    思路比较简单:将二维向量拉直成一个一维向量,基于距离度量以判断向量间的相似性。显而易见,这种不带特征提取的朴素办法,丢掉了二维向量中最重要的四周相邻像素的信息。在比较干净的数据集MNIST还有不错的表现,准确率为96.927%。此外,kNN模型训练慢。

    from sklearn import neighbors
    from sklearn.metrics import precision_score
    
    num_pixels = x_train[0].shape[0] * x_train[0].shape[1]
    x_train = x_train.reshape((x_train.shape[0], num_pixels))
    x_test = x_test.reshape((x_test.shape[0], num_pixels))
    
    knn = neighbors.KNeighborsClassifier()
    knn.fit(x_train, y_train)
    pred = knn.predict(x_test)
    precision_score(y_test, pred, average='macro') # 0.96927533865705706
    

    MLP
    多层感知器MLP (Multi Layer Perceptron)亦即三层的前馈神经网络,所采用的特征与kNN方法类似——每一个像素点的灰度值对应于输入层的一个神经元,隐藏层的神经元数为700(一般介于输入层与输出层的数量之间)。sklearn的MLPClassifier实现MLP分类,下面给出基于keras的MLP实现。没怎么细致地调参,准确率大概在98.530%左右。

    from keras.layers import Dense
    from keras.models import Sequential
    from keras.utils import np_utils
    
    # normalization
    num_pixels = 28 * 28
    x_train = x_train.reshape(x_train.shape[0], num_pixels).astype('float32') / 255
    x_test = x_test.reshape(x_test.shape[0], num_pixels).astype('float32') / 255
    # one-hot enconder for class
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    num_classes = y_train.shape[1]
    
    model = Sequential([
    	Dense(700, input_dim=num_pixels, activation='relu', kernel_initializer='normal'),  # hidden layer
    	Dense(num_classes, activation='softmax', kernel_initializer='normal')  # output layer
    ])
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.summary()
    
    model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=600, batch_size=200, verbose=2)
    model.evaluate(x_test, y_test, verbose=0)  # [0.10381294689745164, 0.98529999999999995]
    

    深度学习

    LeCun早在1989年发表的论文 [1]中提出了用CNN (Convolutional Neural Networks)来做手写数字识别,后来 [2]又改进到Lenet-5,其网络结构如下图所示:

    卷积、池化、卷积、池化,然后套2个全连接层,最后接个Guassian连接层。众所周知,CNN自带特征提取功能,不需要刻意地设计特征提取器。基于keras,Lenet-5 非正式实现如下:

    import keras
    from keras.layers import Conv2D, MaxPooling2D
    from keras.layers import Dense, Dropout, Flatten, Activation
    from keras.models import Sequential
    from keras.utils import np_utils
    
    img_rows, img_cols = 28, 28
    # TensorFlow backend: image_data_format() == 'channels_last'
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1).astype('float32') / 255
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1).astype('float32') / 255
    # one-hot code for class
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    num_classes = y_train.shape[1]
    
    model = Sequential()
    model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='valid', input_shape=(28, 28, 1)))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Activation("sigmoid"))
    
    model.add(Conv2D(16, kernel_size=(5, 5), padding='valid'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Activation("sigmoid"))
    model.add(Dropout(0.25))
    # full connection
    model.add(Conv2D(120, kernel_size=(1, 1), padding='valid'))
    model.add(Flatten())
    # full connection
    model.add(Dense(84, activation='sigmoid'))
    model.add(Dense(num_classes, activation='softmax'))
    
    model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=keras.optimizers.SGD(lr=0.08, momentum=0.9),
                  metrics=['accuracy'])
    model.summary()
    model.fit(x_train, y_train, batch_size=32, epochs=8,
              verbose=1, validation_data=(x_test, y_test))
    model.evaluate(x_test, y_test, verbose=0)
    

    以上三种方法的准确率如下:

    特征 分类器 准确率
    gray kNN 96.927%
    gray 3-layer neural networks 98.530%
    Lenet-5 98.640%

    3. 参考资料

    [1] LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural computation 1.4 (1989): 541-551.
    [2] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
    [3] Taylor B. Arnold, Computer vision: LeNet-5, AlexNet, VGG-19, GoogLeNet.

  • 相关阅读:
    vsync信号产生与分发
    推荐看过不错的博客及网站
    证明质数有无数个
    242 Valid Anagram
    169 Majority Element
    快速排序--quicksort
    插入排序
    选择排序
    冒泡排序
    指针函数 函数指针 回调函数
  • 原文地址:https://www.cnblogs.com/en-heng/p/7040427.html
Copyright © 2020-2023  润新知