• 轻量级OLAP(一):Cube计算


    有一个数据多维分析的任务:

    • 日志的周UV;
    • APP的收集量及标注量,TOP 20 APP(周UV),TOP 20 APP标注分类(周UV);
    • 手机机型的收集量及标注量,TOP 20 机型(周UV),TOP 20 手机厂商(周UV);

    初始的解决方案:Spark读取数据日志,然后根据分析需求逐一进行map、distinct、reduceByKey得到分析结果。但是,这种方案存在着非常大的缺点——重复扫描数据源多次。

    1. Pig

    Pig提供cube关键字做OLAP,将dimension分为了两类:

    • normal,对应于cube operation,(n)个该维度的组合数为(2^n)
    • hierarchical ordering,对应于rollup operation, (n)个该维度的组合数为(n+1)

    官方doc例子如下:

    salesinp = LOAD '/pig/data/salesdata' USING PigStorage(',') AS
        (product:chararray, year:int, region:chararray, state:chararray, city:chararray, sales:long);
    cubedinp = CUBE salesinp BY CUBE(product,year);
    result = FOREACH cubedinp GENERATE FLATTEN(group), SUM(cube.sales) AS totalsales;
    
    salesinp = LOAD '/pig/data/salesdata' USING PigStorage(',') AS
        (product:chararray, year:int, region:chararray, state:chararray, city:chararray, sales:long);
    rolledup = CUBE salesinp BY ROLLUP(region,state,city);
    result = FOREACH rolledup GENERATE FLATTEN(group), SUM(cube.sales) AS totalsales
    

    在例子中,cube的操作相当于按维度组合对每一record进行展开并group by Dimensions,与下一句foreach语句构成了Dimensions + Measure的数据输出格式。

    2. Spark

    朴素多维分析

    从上面介绍的pig OLAP方案中,我们得到灵感——面对开篇的多维分析需求,也可以每一条记录按Dimensions + Measure的规则进行展开:

    /**
     * @param e (uid, LogFact)
     * @return Array[((dimension order No, dimension), measure)]
     */
    def flatAppDvc(e: (String, CaseClasses.LogFact)): Array[((String, String), String)] = {
      val source = (("00", e._2.source), e._1)
      val appName = (("11", e._2.appName), e._1)
      val appTag = (("12", e._2.appTag), e._1)
      val appAll = (("13", "a"), e._1)
      val appCollect = (("14", "a"), e._2.appName)
      val appLabel = e._2.appTag match {
        case "EMPTY" => (("15", "a"), "useless")
        case _ => (("15", "a"), e._2.appName)
      }
      val dvcModel = (("21", e._2.dvcModelLabel), e._1)
      val vendor = (("22", e._2.vendor), e._1)
      val (osAll, osCollect) = ((("23", e._2.osType), e._1), (("24", e._2.osType), e._2.dvcModel))
      val osLabel = e._2.dvcModelLabel match {
        case "EMPTY" => (("25", e._2.osType), "useless")
        case _ => (("25", e._2.osType), e._2.dvcModel)
      }
    
      Array(source, appName, appTag, appAll, appCollect, appLabel, dvcModel, vendor,
        osAll, osCollect, osLabel).filter(_._2 != "useless")
    }
    

    为了区别不同的维度组合,代码中采取了比较low的方式——为每个维度组合进行编号以示区别。Spark提供flatMap API将一行展开为多行,完美地满足了维度展开的需求;然后通过一把group by key + distinct count即可得到结果:

    val flatRdd = logRdd.flatMap(flatAppDvc)
    val result = flatRdd.distinct()
      .mapValues(_ => 1)
      .reduceByKey(_ + _)
    

    多Measure

    前面的分析需求比较简单,measure均为distinct count;因而可以不必对齐Dimensions + Measure。然而,对于比较复杂的分析需求:

    • (整体上)广告物料的收集量、标注量、PV;
    • (广告物料的)二级标注类别的广告物料数、UV、PV;
    • (广告物料的)一级标注类别的广告物料数、UV、PV;

    measure既有distinct count (UV) 也有count (PV),这时需要Dimensions + Measure的对齐,维度flatMap如下:

    /**
     * @param e ((adid, 2nd ad-category, 1st ad-category, uid)
     * @return Array[((dimension order No, dimension), measure:(adid, uid or adid, 1)]
     */
    def flatAd(e: ((String, String, String), String)) = {
      val all = e._1._2 match {
        case "EMPTY" => (("0", "all"), (e._1._1, "non", 0))
        case _ => (("0", "all"), (e._1._1, e._1._1, 1))
      }
      val adCate = (("1", e._1._2), (e._1._1, e._2, 1))
      val adParent = (("2", e._1._3), (e._1._1, e._2, 1))
    
      Array(all, adCate, adParent)
    }
    

    尔后,计算每一维度的measure(其中distinct count采用HyperLogLogPlus算法的stream lib实现):

    val createHLL = (v: String) => {
      val hll = new HyperLogLogPlus(14, 0) // relative-SD = 0.01
      hll.offer(v)
      hll
    }
    
    def computeAdDimention(rdd: RDD[((String, String), (String, String, Int))]) = {
      rdd.combineByKey[(HyperLogLogPlus, HyperLogLogPlus, Int)](
        (v: (String, String, Int)) => (createHLL(v._1), createHLL(v._2), 1),
        (m: (HyperLogLogPlus, HyperLogLogPlus, Int), v: (String, String, Int)) => {
          m._1.offer(v._1)
          m._2.offer(v._2)
          val pv = m._3 + v._3
          (m._1, m._2, pv)
        },
        (m1: (HyperLogLogPlus, HyperLogLogPlus, Int),
         m2: (HyperLogLogPlus, HyperLogLogPlus, Int)) => {
          m1._1.addAll(m2._1)
          m1._2.addAll(m2._2)
          val pv = m1._3 + m2._3
          (m1._1, m1._2, pv)
        }
      )
        .mapValues(t => (t._1.cardinality().toInt, t._2.cardinality().toInt, t._3))
    }
    

    其实,本文有点标题党~~只是借了OLAP的壳做数据多维分析,距离真正的OLAP还是很远滴……

  • 相关阅读:
    JDK有关环境变量的配置
    installation Manager的那回事
    WMB ESQL报文函数截取新的XML方法
    mb常用操作指令
    DB2报错SQLSTATE=57017 code page "1392"
    DB2操作命令
    MQ7.1及高版本的新特性
    Java项目打jar包及外部运行
    loadrunner
    Ireport5那些事
  • 原文地址:https://www.cnblogs.com/en-heng/p/5382224.html
Copyright © 2020-2023  润新知