• Goods transportation


    Goods transportation
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There are n cities located along the one-way road. Cities are numbered from 1 to n in the direction of the road.

    The i-th city had produced pi units of goods. No more than si units of goods can be sold in the i-th city.

    For each pair of cities i and j such that 1 ≤ i < j ≤ n you can no more than once transport no more than c units of goods from the city i to the city j. Note that goods can only be transported from a city with a lesser index to the city with a larger index. You can transport goods between cities in any order.

    Determine the maximum number of produced goods that can be sold in total in all the cities after a sequence of transportations.

    Input

    The first line of the input contains two integers n and c (1 ≤ n ≤ 10 000, 0 ≤ c ≤ 109) — the number of cities and the maximum amount of goods for a single transportation.

    The second line contains n integers pi (0 ≤ pi ≤ 109) — the number of units of goods that were produced in each city.

    The third line of input contains n integers si (0 ≤ si ≤ 109) — the number of units of goods that can be sold in each city.

    Output

    Print the maximum total number of produced goods that can be sold in all cities after a sequence of transportations.

    Examples
    input
    3 0
    1 2 3
    3 2 1
    output
    4
    input
    5 1
    7 4 2 1 0
    1 2 3 4 5
    output
    12
    input
    4 3
    13 10 7 4
    4 7 10 13
    output
    34
    分析:考虑最大流等于最小割,从小到大dp;
       dp[i][j]表示前i个点有j个点在最小割点集里,
       则dp[i][j]=min(dp[i-1][j-1]+s[i],dp[i-1][j]+j*c+p[i]);
       dp[i-1][j-1]+s[i]表示i留在s-割的代价,dp[i-1][j]+j*c+p[i]表示i留在t-割,除了要花费p[i]外,还要花费j*c的代价;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<ll,int>
    #define Lson L, mid, ls[rt]
    #define Rson mid+1, R, rs[rt]
    const int maxn=1e5+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t;
    ll p[maxn],s[maxn],ans[maxn],c;
    int main()
    {
        int i,j;
        scanf("%d%lld",&n,&c);
        rep(i,1,n)scanf("%lld",&p[i]);
        rep(i,1,n)scanf("%lld",&s[i]);
        rep(i,1,n)
        {
            ans[i]=1e18;
            for(j=i;j>=1;j--)
            {
                ans[j]=min(ans[j]+j*c+p[i],ans[j-1]+s[i]);
            }
            ans[0]+=p[i];
        }
        ll ret=1e18;
        rep(i,0,n)ret=min(ret,ans[i]);
        printf("%lld
    ",ret);
        //system("Pause");
        return 0;
    }
  • 相关阅读:
    做别人的舔狗还是让别人成为你的舔狗
    手机控制电脑第二弹之HIPC
    让你的手机缓存视频在电脑上播放
    Premiere Pro 2020安装教程
    Git与GitHub入门基础(二)
    Git与GitHub入门基础(一)
    题解-CF755G PolandBall and Many Other Balls
    题解-CF348E Pilgrims
    [AHOI2008]上学路线(最短路+最小割)
    [AHOI2014/JSOI2014]骑士游戏(SPFA认识)
  • 原文地址:https://www.cnblogs.com/dyzll/p/5956661.html
Copyright © 2020-2023  润新知