• hdu 1536 SG函数模板题


    S-Nim

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3077    Accepted Submission(s): 1361

    Problem Description
    Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


      The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

      The players take turns chosing a heap and removing a positive number of beads from it.

      The first player not able to make a move, loses.


    Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


      Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

      If the xor-sum is 0, too bad, you will lose.

      Otherwise, move such that the xor-sum becomes 0. This is always possible.


    It is quite easy to convince oneself that this works. Consider these facts:

      The player that takes the last bead wins.

      After the winning player's last move the xor-sum will be 0.

      The xor-sum will change after every move.


    Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

    Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

    your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
     
    Input
    Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
     
    Output
    For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
     
    Sample Input
    2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0
     
    Sample Output
    LWW WWL
     
    Source
     
    Recommend
    LL
     
    题意:
    首先输入K 表示一个集合的大小  之后输入集合 表示对于这对石子只能去这个集合中的元素的个数
    之后输入 一个m 表示接下来对于这个集合要进行m次询问 
    之后m行 每行输入一个n 表示有n个堆  每堆有n1个石子  问这一行所表示的状态是赢还是输 如果赢输入W否则L
     
    思路:
    对于n堆石子 可以分成n个游戏 之后把n个游戏合起来就好了
     
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    //注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1边
    //不需要每求一个数的SG就初始化一边
    int SG[10100],n,m,s[102],k;//k是集合s的大小 S[i]是定义的特殊取法规则的数组
    int dfs(int x)//求SG[x]模板
    {
        if(SG[x]!=-1) return SG[x];
        bool vis[110];
        memset(vis,0,sizeof(vis));
    
        for(int i=0;i<k;i++)
        {
            if(x>=s[i])
            {
               dfs(x-s[i]);
               vis[SG[x-s[i]]]=1;
             }
        }
        int e;
        for(int i=0;;i++)
          if(!vis[i])
          {
            e=i;
            break;
          }
        return SG[x]=e;
    }
    int main()
    {
        int cas,i;
        while(scanf("%d",&k)!=EOF)
        {
            if(!k) break;
            memset(SG,-1,sizeof(SG));
            for(i=0;i<k;i++) scanf("%d",&s[i]);
            sort(s,s+k);
            scanf("%d",&cas);
            while(cas--)
            {
                int t,sum=0;
                scanf("%d",&t);
                while(t--)
                {
                    int num;
                    scanf("%d",&num);
                    sum^=dfs(num);
                   // printf("SG[%d]=%d
    ",num,SG[num]);
                }
                if(sum==0) printf("L");
                else printf("W");
            }
            printf("
    ");
        }
        return 0;
    }
    
    
    

     
     下面是对SG打表的做法
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int K=101;
    const int H=10001;//H是我们要打表打到的最大值
    int k,m,l,h,s[K],sg[H],mex[K];///k是集合元素的个数 s[]是集合  mex大小大约和集合大小差不多
    ///注意s的排序
    void sprague_grundy()
    {
        int i,j;
        sg[0]=0;
        for (i=1;i<H;i++){
            memset(mex,0,sizeof(mex));
            j=1;
            while (j<=k && i>=s[j]){ 
                mex[sg[i-s[j]]]=1;
                j++;
            }
            j=0;
            while (mex[j]) j++;
            sg[i]=j;
        }
    }
    
    int main(){
        int tmp,i,j;
    
        scanf("%d",&k);
        while (k!=0){
            for (i=1;i<=k;i++)
                scanf("%d",&s[i]);
            sort(s+1,s+k+1);            //这个不能少
            sprague_grundy();
            scanf("%d",&m);
            for (i=0;i<m;i++){
                scanf("%d",&l);
                tmp=0;
                for (j=0;j<l;j++){
                    scanf("%d",&h);
                    tmp=tmp^sg[h];
                }
                if (tmp)
                    putchar('W');
                else
                    putchar('L');
            }
            putchar('
    ');
            scanf("%d",&k);
        }
        return 0;}

  • 相关阅读:
    NOI模拟赛 6.20
    NOI模拟赛 6.17
    NOI模拟赛 6.16
    计算几何学习笔记
    NOI(p)模拟赛 5.30
    NOI模拟赛 5.26
    [AGC022E] Median Replace 题解
    看完魔圆之后的一点感想(大概
    OI学习日志 11月份
    2021 CSP-S 游记
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3194312.html
Copyright © 2020-2023  润新知