题意:
析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式。
其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x2 + x3 +... xm = k,有多少非零解,隔板法很容易得到答案 C(k+m-1, m-1),但是有限制怎么办,使用容斥,考虑有一个变量超过 n-1,两个变量超过 n-1,等等,根据集合论,很容易知道偶加,奇减。。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x // #define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200000 + 10; const int maxm = 1e6 + 10; const LL mod = 998244353LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } LL fact[maxn], inv[maxn]; LL fast_pow(LL a, int n){ LL res = 1; while(n){ if(n&1) res = res * a % mod; n >>= 1; a = a * a % mod; } return res; } void init(){ fact[0] = fact[1] = 1; for(int i = 2; i < maxn; ++i) fact[i] = fact[i-1] * i % mod; inv[maxn-1] = fast_pow(fact[maxn-1], mod - 2); for(int i = maxn-2; i >= 0; --i) inv[i] = inv[i+1] * (i+1) % mod; } inline LL C(int n, int m){ if(n < m) return 0LL; return fact[n] * inv[m] % mod * inv[n-m] % mod; } inline LL G(int x, int k){ return C(m, x) * C(k - x * n + m - 1, m - 1) % mod; } int main(){ init(); int T, k; cin >> T; while(T--){ scanf("%d %d %d", &n, &m, &k); if(n > k){ printf("%I64d ", C(m+k-1, m-1)); continue; } LL ans = 0; for(int i = 0; i <= (k + m - 1) / n; ++i) ans = (ans + (i&1? -G(i, k) : G(i, k))) % mod; printf("%I64d ", (ans%mod+mod)%mod); } return 0; }