题意:有 k 只小鸟,每只都只能活一天,但是每只都可以生出一些新的小鸟,生出 i 个小鸟的概率是 Pi,问你 m 天所有的小鸟都死亡的概率是多少。
析:先考虑只有一只小鸟,dp[i] 表示 i 天全部死亡的概率,那么 dpi] = P0 + P1*dp[i-1] + P2*dp[i-1]^2 + ... + Pn*dp[i-1]^(n-1),式子 Pjdp[i-1]^j 表示该小鸟生了 j 后代,,它们在 i-1 天死亡的概率是 dp[i-1],因为有 j 只,每只都是 dp[i-1],所以就是 dp[i-1]^j。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 10; const int maxm = 100 + 2; const LL mod = 100000000; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } double p[maxn], dp[maxn]; int main(){ int T, k; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d %d", &n, &k, &m); for(int i = 0; i < n; ++i) scanf("%lf", p + i); dp[0] = 0; dp[1] = p[0]; for(int i = 2; i <= m; ++i){ dp[i] = p[0]; for(int j = 1; j < n; ++j) dp[i] += p[j] * pow(dp[i-1], j); } printf("Case #%d: %.6f ", kase, pow(dp[m], k)); } return 0; }