• UVa 11021 Tribles (概率DP + 组合数学)


    题意:有 k 只小鸟,每只都只能活一天,但是每只都可以生出一些新的小鸟,生出 i 个小鸟的概率是 Pi,问你 m 天所有的小鸟都死亡的概率是多少。

    析:先考虑只有一只小鸟,dp[i] 表示 i 天全部死亡的概率,那么 dpi] = P0 + P1*dp[i-1] + P2*dp[i-1]^2 + ... + Pn*dp[i-1]^(n-1),式子 Pjdp[i-1]^j 表示该小鸟生了 j 后代,,它们在 i-1 天死亡的概率是 dp[i-1],因为有 j 只,每只都是 dp[i-1],所以就是 dp[i-1]^j。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1000 + 10;
    const int maxm = 100 + 2;
    const LL mod = 100000000;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    double p[maxn], dp[maxn];
    
    int main(){
      int T, k;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d %d %d", &n, &k, &m);
        for(int i = 0; i < n; ++i)  scanf("%lf", p + i);
        dp[0] = 0;  dp[1] = p[0];
        for(int i = 2; i <= m; ++i){
          dp[i] = p[0];
          for(int j = 1; j < n; ++j)  dp[i] += p[j] * pow(dp[i-1], j);
        }
        printf("Case #%d: %.6f
    ", kase, pow(dp[m], k));
      }
      return 0;
    }
    

      

  • 相关阅读:
    Matlab画图-非常具体,非常全面
    PostgreSQL代码分析,查询优化部分,pull_ands()和pull_ors()
    Windows内核
    [WebGL入门]十,矩阵计算和外部库
    HOG特征-理解篇
    hdu 5035 概率论
    Hibernate对象持久化框架
    Thinkpad X200 屏幕备案
    64地点 Windows 8/7 根据系统 32地点PLSQL 耦合 64 地点 Oracle 11g
    阐述php(四) 流量控制
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8508820.html
Copyright © 2020-2023  润新知