• UVa 11478 Halum (差分约束)


    题意:给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和整数d,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值非负且最大。

    析:首先二分答案,很容易想到,令sum(u) 表示作用在 u 结点的所有d的和,然后对于一条 u 到 v 的边,要满足大于 ans,也就是sum(v) - sum(u) < w(u, v) - ans,然后可以形成很多个不等式组,就是可以用差分约束来做了,每次只要判断是不是有负环就好了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 500 + 10;
    const int mod = 1000;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r > 0 && r <= n && c > 0 && c <= m;
    }
    
    struct Edge{
      int from, to, dist;
    };
    
    struct BellmanFord{
      int n, m;
      vector<Edge> edges;
      vector<int> G[maxn];
      int inq[maxn];
      int cnt[maxn];
      int d[maxn];
    
      void init(int n){
        this-> n = n;
        for(int i = 0; i < n; ++i)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int u, int v, int d){
        edges.pb((Edge){u, v, d});
        m = edges.sz;
        G[u].pb(m-1);
      }
    
      bool bfs(){
        queue<int> q;
        ms(inq, 0);  ms(cnt, 0);
        ms(d, 0);  inq[0] = true;
        for(int i = 0; i < n; ++i)  q.push(i);
    
        while(!q.empty()){
          int u = q.front();  q.pop();
          inq[u] = 0;
          for(int i = 0; i < G[u].sz; ++i){
            Edge &e = edges[G[u][i]];
            if(d[e.to] > d[u] + e.dist){
              d[e.to] = d[u] + e.dist;
              if(!inq[e.to]){
                q.push(e.to);
                inq[e.to] = 1;
                if(++cnt[e.to] > n)  return true;
              }
            }
          }
        }
        return false;
      }
    
      bool solve(int x){
        for(int i = 0; i < edges.sz; ++i)
          edges[i].dist -= x;
        bool ans = bfs();
        for(int i = 0; i < edges.sz; ++i)
          edges[i].dist += x;
        return ans;
      }
    };
    
    BellmanFord bell;
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        bell.init(n);
        int l = 1, r = 0;
        for(int i = 0; i < m; ++i){
          int u, v, c;
          scanf("%d %d %d", &u, &v, &c);
          --u, --v;
          bell.addEdge(u, v, c);
          r = max(r, c);
        }
        if(bell.solve(l))  puts("No Solution");
        else if(!bell.solve(r+1))  puts("Infinite");
        else{
          while(l <= r){
            int m = l + r >> 1;
            if(bell.solve(m))  r = m - 1;
            else l = m + 1;
          }
          printf("%d
    ", l-1);
        }
      }
      return 0;
    }
    

      

  • 相关阅读:
    unity3d动态加载资源
    u3D大场景的优化
    C#代码规范
    游戏模型规范
    vue prop不同数据类型(数组,对象..)设置默认值
    vue-router实现页面的整体跳转
    Vue实现组件props双向绑定解决方案
    电脑连接并调试手机浏览器的网页
    对象里面的属性有值但是打印出来是空的,获取不到
    vue-cli sass安装
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7519443.html
Copyright © 2020-2023  润新知