• POJ 3709 K-Anonymous Sequence (斜率优化DP)


    题意:有一个不递减的序列,现在要把这些数分成若干个部分,每部分不能少于m个数。每部分的权值为所有数减去该部分最小的数的和。求最小的总权值。

    析:状态方程很容易写出来,dp[i] = min{dp[j] + sum[i] - sum[j] - (i-j)*a[j+1] },然而这个复杂度是 O(n^2)的肯定要TLE,

    用斜率进行优化,维护一个下凸曲线,注意这个题是有个限制就是至少有要m个是连续的,所以开始的位置是2*m,想想为什么。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 500000 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    LL dp[maxn], sum[maxn];
    int a[maxn], q[maxn];
    
    LL getUP(int i, int j){
      return dp[i] - sum[i] + (LL)i*a[i+1] - (dp[j] - sum[j] + (LL)j*a[j+1]);
    }
    
    LL getDOWN(int i, int j){
      return a[i+1] - a[j+1];
    }
    
    LL getDP(int i, int j){
      return dp[j] + sum[i] - sum[j] - (LL)(i-j)*a[j+1];
    }
    
    int main(){
      int T;  cin >> T;
      while(T--){
        scanf("%d %d", &n, &m);
        for(int i = 1; i <= n; ++i){
          scanf("%d", a+i);
          sum[i] = sum[i-1] + a[i];
        }
        int fro = 0, rear = 0;
        q[++rear] = m;
        for(int i = m; i < 2*m; ++i)  dp[i] = sum[i] - i * a[1];
        for(int i = m * 2; i <= n; ++i){  // notice
          while(fro+1 < rear && getUP(q[fro+2], q[fro+1]) <= i*getDOWN(q[fro+2], q[fro+1]))  ++fro;
          dp[i] = getDP(i, q[fro+1]);
          int k = i - m + 1;
          while(fro+1 < rear && getUP(k, q[rear])*getDOWN(k, q[rear-1]) <= getUP(k, q[rear-1])*getDOWN(k, q[rear]))  --rear;
          q[++rear] = k;
        }
        printf("%I64d
    ", dp[n]);
      }
      return 0;
    }
    

      

  • 相关阅读:
    Intellij IDEA使用姿势
    款阿里开源的 Java 诊断工具Arthas
    Spring Boot Runner启动器
    Spring Boot 2.x 启动全过程源码分析
    Spring Boot自动配置原理
    vue包部署在tomcat上,解决资源路径问题
    输入回车 回显换行
    session和cookie
    WebStorage——SessionStorage、LocalStorage与cookie
    HTML5 cache
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7327755.html
Copyright © 2020-2023  润新知