题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少。
析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] + 1) ==> dp[i] = (sum(dp[j]) + m) / (m-1)。其中m是因数个数。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } double dp[maxn]; double dfs(int n){ if(dp[n] > -0.5) return dp[n]; if(1 == n) return dp[n] = 0.0; if(n == 2 || n == 3) return dp[n] = 2.0; dp[n] = 0.0; int t = sqrt(n+0.5); int cnt = 2; for(int i = 2; i < t; ++i) if(n % i == 0){ dp[n] += dfs(n / i) + dfs(i); cnt += 2; } if(n % t == 0){ if(n / t == t) dp[n] += dfs(t), ++cnt; else dp[n] += dfs(t) + dfs(n/t), cnt += 2; } dp[n] += cnt; return dp[n] = dp[n] / (cnt-1.0); } int main(){ memset(dp, -1, sizeof dp); int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); printf("Case %d: %.10f ", kase, dfs(n)); } return 0; }