• UVa 10564 Paths through the Hourglass (DP)


    题意:从最上面走到最下面,使得路过的数求和为s,并输出编号最小的一组路径。

    析:基本动规,dp[i][j][s] 从最下面到 i,j 和为s,路径数,要么从左面要么从右,求和就好了,注意上面和下面的不太一样,要分别求解。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <unordered_map>
    #include <unordered_set>
    #define debug() puts("++++");
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 150 + 5;
    const int mod = 2000;
    const int dr[] = {-1, 1, 0, 0};
    const int dc[] = {0, 0, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL dp[45][25][505];
    int a[45][25];
    
    void print(int d, int idx, int ans){
        if(d + 1 == 2 * n)  return ;
        if(d < n){
            if(1 == d)  for(int i = 1; i <= n; ++i)if(dp[d][i][ans]){
                printf("%d ", i-1);
                if(dp[d+1][i-1][ans-a[d][i]]){
                    putchar('L');
                    print(d+1, i-1, ans - a[d][i]);
                    return ;
                }
                else{
                    putchar('R');
                    print(d+1, i, ans - a[d][i]);
                    return ;
                }
            }
            if(dp[d+1][idx-1][ans-a[d][idx]]){
                    putchar('L');
                    print(d+1, idx-1, ans - a[d][idx]);
                    return ;
            }
            else{
                    putchar('R');
                    print(d+1, idx, ans - a[d][idx]);
                    return ;
            }
        }
        else{
            if(dp[d+1][idx][ans-a[d][idx]]){
                    putchar('L');
                    print(d+1, idx, ans - a[d][idx]);
                    return ;
            }
            else{
                    putchar('R');
                    print(d+1, idx+1, ans - a[d][idx]);
                    return ;
            }
        }
    }
    
    int main(){
        while(scanf("%d %d", &n, &m) == 2 && m + n){
            for(int i = 1; i <= n; ++i)
                for(int j = 1; j <= n-i+1; ++j)
                    scanf("%d", &a[i][j]);
            for(int i = n+1; i < 2*n; ++i)
                for(int j = 1; j <= i-n+1; ++j)
                    scanf("%d", &a[i][j]);
    
            memset(dp, 0, sizeof dp);
            for(int i = 1; i <= n; ++i)  dp[2*n-1][i][a[2*n-1][i]] = 1;
            for(int i = 2*n-2; i >= n; --i)
                for(int j = 1; j <= i-n+1; ++j)
                    for(int k = a[i][j]; k <= m; ++k)
                        dp[i][j][k] = dp[i+1][j][k-a[i][j]] + dp[i+1][j+1][k-a[i][j]];
            for(int i = n-1; i > 0; --i)
                for(int j = 1; j <= n-i+1; ++j)
                    for(int k = a[i][j]; k <= m; ++k)
                        dp[i][j][k] = dp[i+1][j][k-a[i][j]] + dp[i+1][j-1][k-a[i][j]];
    
            LL ans = 0;
            for(int i = 1; i <= n; ++i)  ans += dp[1][i][m];
            printf("%lld
    ", ans);
            if(ans)   print(1, -1, m);
            printf("
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    BZOJ1511: [POI2006]OKR-Periods of Words
    BZOJ1009: [HNOI2008]GT考试
    BZOJ1355: [Baltic2009]Radio Transmission
    BZOJ1415: [Noi2005]聪聪和可可
    BZOJ1004: [HNOI2008]Cards
    UVA11077 Find the Permutations
    LA3641 Leonardo's Notebook
    UVA10294 Arif in Dhaka
    UVA11762 Race to 1
    UVA11427 Expect the Expected
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6602065.html
Copyright © 2020-2023  润新知