• POJ 3281 Dining (网络流之最大流)


    题意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 100) 种饮料。每头牛都有各自喜欢的食物和饮料,

    而每种食物或饮料只能分配给一头牛。最多能有多少头牛可以同时得到喜欢的食物和饮料?

    析:是一个经典网络流的题,建立一个超级源点,连向每种食物,建立一个超级汇点,连向每种饮料,然后把每头牛拆成两个点,

    一个和食物连,一个和饮料连,最后跑一遍最大流即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 400 + 5;
    const int mod = 1e9;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      bool vis[maxn];
      int d[maxn];
      int cur[maxn];
    
      void init(){
        edges.clear();
        for(int i = 0; i < maxn; ++i)  G[i].clear();
      }
    
      void addEdge(int from, int to, int cap){
        edges.push_back((Edge){from, to, cap, 0});
        edges.push_back((Edge){to, from, 0, 0});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
      }
    
      bool bfs(){
        memset(vis, 0, sizeof vis);
        queue<int> q;
        q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while(!q.empty()){
          int x = q.front();  q.pop();
          for(int i = 0; i < G[x].size(); ++i){
            Edge &e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow){
              vis[e.to] = 1;
              d[e.to] = d[x] + 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int x, int a){
        if(x == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[x]; i < G[x].size(); ++i){
          Edge &e = edges[G[x][i]];
          if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxFlow(int s, int t){
        this->s = s; this->t = t;
        int flow = 0;
        while(bfs()){
          memset(cur, 0, sizeof cur);
          flow += dfs(s, INF);
        }
        return flow;
      }
    };
    Dinic dinic;
    
    int main(){
      int k;
      while(scanf("%d %d %d", &n, &m, &k) == 3){
        dinic.init();
        int s = 0, t = 402;
        for(int i = 1; i <= m; ++i)  dinic.addEdge(s, i+200, 1);
        for(int i = 1; i <= k; ++i)  dinic.addEdge(i+300, t, 1);
        for(int i = 1; i <= n; ++i){
          int f, d;
          dinic.addEdge(i, i+100, 1);
          scanf("%d %d", &f, &d);
          for(int j = 0; j < f; ++j){
            int x;
            scanf("%d", &x);
            dinic.addEdge(x+200, i, 1);
          }
          for(int j = 0; j < d; ++j){
            int x;
            scanf("%d", &x);
            dinic.addEdge(i+100, x+300, 1);
          }
        }
        printf("%d
    ", dinic.maxFlow(s, t));
      }
      return 0;
    }
    
  • 相关阅读:
    govalidator----结构体tag验证
    结构字段验证--validator.v9
    序列化
    案例:8,64,256都是2的阶次方数(8是2的3次方),用Java编写程序来判断一个整数是不是2的阶次方数。
    易错点
    什么是线程与进程?
    对象与实例的区别?
    什么情况下用断言?assert
    垃圾收集器什么时候回收垃圾?
    HashMap 和 HashTable 的区别
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6537124.html
Copyright © 2020-2023  润新知