• UVa 1658 Admiral (最小费用流)


    题意:给定一个图,求1-n的两条不相交的路线,并且权值和最小。

    析:最小费用流,把每个结点都拆成两个点,中间连一条容量为1的边,然后一个作为入点,另一个是出点。最后跑两次最小费用流就行了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-5;
    const int maxn = 2000 + 10;
    const int mod = 1e6;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Edge{
      int from, to, cap, flow;
      LL cost;
    };
    
    struct MCMF{
      int n, m;
      vector<Edge> edges;
      vector<int> G[maxn];
      int inq[maxn];
      LL d[maxn];
      int p[maxn];
      int a[maxn];
    
      void init(int n){
        this->n = n;
        for(int i = 0; i < n; ++i)  G[i].clear();
        edges.clear();
      }
    
      void addEdge(int from, int to, int cap, LL cost){
        edges.push_back((Edge){from, to, cap, 0, cost});
        edges.push_back((Edge){to, from, 0, 0, -cost});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
      }
    
      bool BellmanFord(int s, int t, int &flow, LL &cost){
        for(int i = 0; i < n; ++i)  d[i] = INF;
        memset(inq, 0, sizeof inq);
        d[s] = 0;  inq[s] = 1;  p[s] = 0;   a[s] = INF;
    
        queue<int> q;
        q.push(s);
        while(!q.empty()){
          int u = q.front();  q.pop();
          inq[u] = 0;
          for(int i = 0; i < G[u].size(); ++i){
            Edge &e = edges[G[u][i]];
            if(e.cap > e.flow && d[e.to] > d[u] + e.cost){
              d[e.to] = d[u] + e.cost;
              p[e.to] = G[u][i];
              a[e.to] = min(a[u], e.cap-e.flow);
              if(!inq[e.to])  q.push(e.to),  inq[e.to] = 1;
            }
          }
        }
        if(d[t] == INF)  return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while(u != s){
          edges[p[u]].flow += a[t];
          edges[p[u]^1].flow -= a[t];
          u = edges[p[u]].from;
        }
        return true;
      }
    
      LL minCost(int s, int t){
        int flow = 0;
        LL cost = 0;
        while(BellmanFord(s, t, flow, cost));
        return cost;
      }
    };
    MCMF mcmf;
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        int u, v, val;
        mcmf.init(n+n+1);
        for(int i = 0; i < m; ++i){
          scanf("%d %d %d", &u, &v, &val);
          mcmf.addEdge(u+n, v, 1, val);
        }
        for(int i = 2; i < n; ++i)
          mcmf.addEdge(i, i+n, 1, 0);
        mcmf.addEdge(1, 1+n, 2, 0);
        mcmf.addEdge(n, n+n, 2, 0);
        printf("%lld
    ", mcmf.minCost(1, n+n) + mcmf.minCost(1, n+n));
      }
      return 0;
    }
    
  • 相关阅读:
    Tomcat安装与配置
    模板方法模式
    观察者模式
    访问者模式
    策略模式
    迭代器模式
    状态模式
    访问者模式
    备忘录模式
    解释器模式
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6416000.html
Copyright © 2020-2023  润新知