题意:有f+1个人来分n个圆形派,每个人得到的必须是一个整块,并且是面积一样,问你面积是多少。
析:二分这个面积即可,小了就多余了,多了就不够分,很简单就能判断。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; bool judge(double mid){ int ans = 0; for(int i = 0; i < n; ++i) ans += (int)floor(PI * a[i] * a[i] / mid); return ans >= m; } double solve(){ double l = 0, r = PI * 10000.0* 10000.0; while(fabs(r - l) > 1e-5){ double mid = (l + r) / 2.0; if(judge(mid)) l = mid; else r = mid; } return l; } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); ++m; for(int i = 0; i < n; ++i) scanf("%d", a+i); printf("%.4f ", solve()); } return 0; }