题意:给定一个1-n的墙,然后有两种操作,一种是P l ,r, a 把l-r的墙都染成a这种颜色,另一种是 Q l, r 表示,输出 l-r 区间内的颜色。
析:应该是一个线段树+状态压缩,但是我用set暴力过去了。用线段树+状态压缩,区间更新,很简单,就不说了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int mod = 1e9 + 7; const int dr[] = {0, 1, 0, -1, -1, 1, 1, -1}; const int dc[] = {1, 0, -1, 0, 1, 1, -1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int l, r; Node() { } Node(int ll, int rr) : l(ll), r(rr) { } bool operator < (const Node &p) const{ return r < p.r; } }; set<Node> sets[35]; set<Node> :: iterator it, it1; int main(){ while(scanf("%d %d", &n, &m) == 2){ if(!m && !n) break; for(int i = 1; i <= 30; ++i) sets[i].clear(); sets[2].insert(Node(1, n)); char s[5]; int a, b, c; Node u; while(m--){ scanf("%s", s); if(s[0] == 'P'){ scanf("%d %d %d", &a, &b, &c); for(int i = 1; i <= 30; ++i){ if(sets[i].size() == 0) continue; while(true){ it1 = sets[i].lower_bound(Node(0, a)); if(it1 == sets[i].end() || it1->l > b) break; u = *it1; sets[i].erase(it1); if(u.l < a){ sets[i].insert(Node(u.l, a-1)); if(u.r > b) sets[i].insert(Node(b+1, u.r)); } else if(u.r > b) sets[i].insert(Node(b+1, u.r)); } } sets[c].insert(Node(a, b)); } else{ scanf("%d %d", &a, &b); int cnt = 0; for(int i = 1; i < 31; ++i){ if(sets[i].size() == 0) continue; it1 = sets[i].lower_bound(Node(0, a)); if(it1 == sets[i].end() || it1->l > b) continue; if(cnt) putchar(' '); printf("%d", i); ++cnt; } putchar(' '); } } } return 0; }
线段树:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const int mod = 1e9 + 7; const int dr[] = {0, 1, 0, -1, -1, 1, 1, -1}; const int dc[] = {1, 0, -1, 0, 1, 1, -1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL sum[maxn<<2], sets[maxn<<2]; void pushup(int rt){ sum[rt] = sum[rt<<1] | sum[rt<<1|1]; } void pushdown(int rt, int len){ int l = rt<<1, r = rt<<1|1; if(sets[rt]){ sum[r] = sum[l] = sets[rt]; sets[l] = sets[r] = sets[rt]; sets[rt] = 0; } } void build(int l, int r, int rt){ sets[rt] = 0; if(l == r){ sum[rt] = 2; return ; } int m = (l + r) >> 1; build(lson); build(rson); pushup(rt); } void update(int L, int R, int val, int l, int r, int rt){ if(L <= l && R >= r){ sets[rt] = 1<<val-1; sum[rt] = 1<<val-1; return ; } pushdown(rt, r-l+1); int m = (l + r) >> 1; if(L <= m) update(L, R, val, lson); if(R > m) update(L, R, val, rson); pushup(rt); } LL query(int L, int R, int l, int r, int rt){ if(L <= l && R >= r) return sum[rt]; pushdown(rt, r-l+1); LL ans = 0; int m = (l + r) >> 1; if(L <= m) ans |= query(L, R, lson); if(m < R) ans |= query(L, R, rson); return ans; } int main(){ while(scanf("%d %d", &n, &m) == 2 && m+n){ build(1, n, 1); int l, r, val; char s[5]; while(m--){ scanf("%s", s); if(s[0] == 'P'){ scanf("%d %d %d", &l, &r, &val); update(l, r, val, 1, n, 1); } else{ scanf("%d %d", &l, &r); LL ans = query(l, r, 1, n, 1); int cnt = 0; for(int i = 0; i < 30; ++i) if(ans & (1<<i)){ if(cnt) putchar(' '); printf("%d", i+1); ++cnt; } printf(" "); } } } return 0; }