• FZU 2020 组合 (Lucas定理)


    题意:中文题。

    析:直接运用Lucas定理即可。但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    //#include <unordered_map>
    //#include <tr1/unordered_map>
    //#define freopenr freopen("in.txt", "r", stdin)
    //#define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    //const double inf = 0x3f3f3f3f3f3f;
    //const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 10005;
    //const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL p;
    
    LL quick_pow(LL a, LL n){
        LL ans = 1;
        a %= p;
        while(n){
            if(n & 1)  ans = ans * a % p;
            a = a * a % p;
            n >>= 1;
        }
        return ans;
    }
    
    LL C(LL n, LL m){
        if(n < m)  return 0;
        LL a = 1, b = 1;
        while(m){
            a = a * n % p;
            b = b * m % p;
            --m;  --n;
        }
        return a * quick_pow(b, p-2) % p;
    }
    
    LL Lucas(LL n, LL m){
        if(!m)  return 1;
        return C(n%p, m%p) * Lucas(n/p, m/p);
    }
    
    int main(){
        int T;  cin >> T;
        while(T--){
            LL n, m;
            scanf("%I64d %I64d %I64d", &n, &m, &p);
            printf("%I64d
    ", Lucas(n, m));
        }
        return 0;
    }
    
  • 相关阅读:
    FFT学习及简单应用(一点点详细)
    Codeforces 1131 (div 2)
    【NOI2012】魔幻棋盘
    【hdu多校联考第二场】Odd Shops
    【Helvetic Coding Contest 2018】B2. Maximum Control (medium)
    解线性同余方程组
    Math teacher's homework
    【NOIP模拟赛】一道挖掉背景的数学题
    逆向基础-模块隐藏之断链
    解决请求筛选模块被配置为拒绝包含的查询字符串过长的请求
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6034335.html
Copyright © 2020-2023  润新知