• HDU 3304 Interesting Yang Yui Triangle (Lucas定理)


    题意:求杨辉三角中第 n+1行不能整除 p的数目。

    析:运用Lucas定理,只要统计C(ni, mi)中全都不是0的数目即可,因为是第 n+1行,所以ni每次都不变,也就是mi <= ni,那么C(ni, mi),就不是0.

    所以就有ni+1种答案,最后乘起来即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <unordered_map>
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 10005;
    const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
    const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int main(){
        int kase = 0;
        while(scanf("%d %d", &m, &n) == 2 && m+n){
            int ans = 1;
            while(n){
                ans *= n%m + 1;
                n /= m;
            }
            printf("Case %d: %04d
    ", ++kase, ans%10000);
        }
        return 0;
    }
    
  • 相关阅读:
    #maven解决乱码问题
    #jquery隐藏和启用
    date类型时间比较大小
    xml<>编译
    Linux分区有损坏修复
    linux部署相关命令
    Java实现4位数吸血鬼数字算法
    Java冒泡算法及中位数算法
    DT梦工厂 第25课 Scala中curring实战详解
    DT梦工厂 第24讲 scala中sam转换实战详解
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6034279.html
Copyright © 2020-2023  润新知