• HDU 6567 Cotree (树的重心+并查集+树形DP)


    Cotree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1215    Accepted Submission(s): 416

    Problem Description
    Avin has two trees which are not connected. He asks you to add an edge between them to make them connected while minimizing the function ni=1nj=i+1dis(i,j), where dis(i,j) represents the number of edges of the path from i to j. He is happy with only the function value.
     
    Input
    The first line contains a number n (2<=n<=100000). In each of the following n2 lines, there are two numbers u and v, meaning that there is an edge between u and v. The input is guaranteed to contain exactly two trees.
     
    Output
    Just print the minimum function value.
     
    Sample Input
    3 1 2
     
    Sample Output
    4
     
    Source
     
    Recommend
    liuyiding
    题意:给定两棵树,然后让你加上一条边使得成为一棵树,并且新树上的所有的任意两点的距离最小。

    析:首先根据题意应该能够知道连接两棵树的重心才是最小的距离,树的重心查找方式就是枚举每个点,然后计算去年该点剩下的连通分量中点的数量最多的需要最少,只需要一个DFS就可以解决。有了重心后,可以直接连一条边,然后再计算距离,距离计算可以枚举所有边的贡献,该边的贡献就是该边左点的点数乘以该边右边的点数。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define print(x) cout<<(x)<<endl
    // #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    // #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    #define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 7;
    const int maxm = 2000000 + 7;
    const LL mod = 1e9 + 7;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    int n, m;
    
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){
      int x;  cin >> x;  return x;
    }
    
    struct Edge{
      int to, next;
    };
    
    int head[maxn];
    int cnt;
    Edge edges[maxn<<1];
    int f[maxn], sz[maxn];
    int p[maxn];
    
    inline int Find(int x){
      return x == p[x] ? x : p[x] = Find(p[x]);
    }
    
    void add_edge(int u, int v){
      edges[cnt].to = v;
      edges[cnt].next = head[u];
      head[u] = cnt++;
    }
    
    void dfs(int u, int fa, int num, int &rt){
      sz[u] = 1;
      f[u] = 0;
      for(int i = head[u]; ~i; i = edges[i].next){
        int v = edges[i].to;
        if(v != fa){
          dfs(v, u, num, rt);
          sz[u] += sz[v];
          f[u] = max(f[u], sz[v]);
        }
      }
      f[u] = max(f[u], num - sz[u]);
      if(f[u] < f[rt])  rt = u;
    }
    
    int dp[maxn];
    
    LL dfs(int u, int fa){
      dp[u] = 1;
      LL ans = 0;
      for(int i = head[u]; ~i; i = edges[i].next){
        int v = edges[i].to;
        if(v != fa){
          ans += dfs(v, u);
          dp[u] += dp[v];
          ans += dp[v] * 1LL * (n - dp[v]);
        }
      }
      return ans;
    }
    map<int, int> mp;
    
    int main(){
      while(scanf("%d", &n) == 1){
        cnt = 0;  ms(head, -1);
        for(int i = 0; i <= n; ++i)  p[i] = i;
        for(int i = 2; i < n; ++i){
          int x, y;  scanf("%d %d", &x, &y);
          add_edge(x, y);
          add_edge(y, x);
          x = Find(x);
          y = Find(y);
          if(x != y)  p[y] = x;
        }
    
        mp.cl;
        for(int i = 1; i <= n; ++i)  ++mp[Find(i)];
        ms(f, INF);
        auto it = mp.be;
        int rt1 = 0, rt2 = 0;
        dfs(it->fi, -1, it->se, rt1);
        ++it;
        dfs(it->fi, -1, it->se, rt2);
        add_edge(rt1, rt2);
        add_edge(rt2, rt1);
    
        print(dfs(1, -1));
      }
      return 0;
    }
    

      

  • 相关阅读:
    使用AChartEngine画图,项目总结
    Windows系统安装实验报告
    Linux系统安装实验报告
    vm虚拟机详细安装步骤
    L3-010. 是否完全二叉搜索树
    第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛
    L2-021. 点赞狂魔
    L2-020. 功夫传人
    L2-019. 悄悄关注
    L2-017. 人以群分
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/13257275.html
Copyright © 2020-2023  润新知