Rng
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 624 Accepted Submission(s): 411
Problem Description
Avin is studying how to synthesize data. Given an integer n, he constructs an interval using the following method: he first generates a integer r between 1 and n (both inclusive) uniform-randomly, and then generates another integer l between 1 and r (both inclusive) uniform-randomly. The interval [l, r] is then constructed. Avin has constructed two intervals using the method above. He asks you what the probability that two intervals intersect is. You should print p* q(−1)(MOD 1, 000, 000, 007), while pq denoting the probability.
Input
Just one line contains the number n (1 ≤ n ≤ 1, 000, 000).
Output
Print the answer.
Sample Input
1
2
Sample Output
1
750000006
Source
Recommend
liuyiding
题意:给定一个 n ,你可以构造出两个区间,求这两个区间相交的概率是多少,构造的方式就是首先在 [1, n] 内随机选一个点 R,然后再在 [1, R] 随机选另一点 L,形成区间 [L, R],两次构造过程是独立的。
析:假设两个区间的右端点是 a, b,然后可以得到对于给定的 a 和 b,不相交的概率为 ,然后就可以枚举a和b,可以得到下式
化简得到
然后使用逆元就可以求了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") // #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x #define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 7; const int maxm = 2000000 + 7; const LL mod = 1e9 + 7; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; int n, m; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; cin >> x; return x; } const LL inv2 = 500000004L; LL fast_pow(LL a, int n){ LL res = 1; while(n){ if(n&1) res = res * a % mod; n >>= 1; a = a * a % mod; } return res; } int main(){ while(cin >> n) cout << (inv2 + fast_pow(n<<1, mod-2)) % mod << endl; }