1. 自定义inputFormat
1.1 需求
无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案
1.2 分析
小文件的优化无非以下几种方式:
1、 在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS
2、 在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
3、 在mapreduce处理时,可采用combineInputFormat提高效率
实现
本节实现的是上述第二种方式
程序的核心机制:
自定义一个InputFormat
改写RecordReader,实现一次读取一个完整文件封装为KV
在输出时使用SequenceFileOutPutFormat输出合并文件
代码如下:
自定义InputFromat
package cn.itcast.bigdata.combinefile; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; public class WholeFileInputFormat extends FileInputFormat<NullWritable, BytesWritable>{ @Override protected boolean isSplitable(JobContext context, Path file) { return false; } @Override public RecordReader<NullWritable, BytesWritable> createRecordReader( InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { WholeFileRecordReader reader = new WholeFileRecordReader(); reader.initialize(split, context); return reader; } }
package cn.itcast.bigdata.combinefile; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileSplit; /** * * RecordReader的核心工作逻辑: * 通过nextKeyValue()方法去读取数据构造将返回的key value * 通过getCurrentKey 和 getCurrentValue来返回上面构造好的key和value * * * @author * */ class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> { private FileSplit fileSplit; private Configuration conf; private BytesWritable value = new BytesWritable(); private boolean processed = false; @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { this.fileSplit = (FileSplit) split; this.conf = context.getConfiguration(); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { if (!processed) { byte[] contents = new byte[(int) fileSplit.getLength()]; Path file = fileSplit.getPath(); FileSystem fs = file.getFileSystem(conf); FSDataInputStream in = null; try { in = fs.open(file); IOUtils.readFully(in, contents, 0, contents.length); value.set(contents, 0, contents.length); } finally { IOUtils.closeStream(in); } processed = true; return true; } return false; } @Override public NullWritable getCurrentKey() throws IOException, InterruptedException { return NullWritable.get(); } @Override public BytesWritable getCurrentValue() throws IOException, InterruptedException { return value; } /** * 返回当前进度 */ @Override public float getProgress() throws IOException { return processed ? 1.0f : 0.0f; } @Override public void close() throws IOException { // do nothing } }
package cn.itcast.bigdata.combinefile; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class SmallFilesToSequenceFileConverter extends Configured implements Tool { static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> { private Text filenameKey; @Override protected void setup(Context context) throws IOException, InterruptedException { InputSplit split = context.getInputSplit(); Path path = ((FileSplit) split).getPath(); filenameKey = new Text(path.toString()); } @Override protected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException { context.write(filenameKey, value); } } @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); /*System.setProperty("HADOOP_USER_NAME", "hadoop");*/ String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: combinefiles <in> <out>"); System.exit(2); } Job job = Job.getInstance(conf,"combine small files to sequencefile"); job.setJarByClass(SmallFilesToSequenceFileConverter.class); job.setInputFormatClass(WholeFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(BytesWritable.class); job.setMapperClass(SequenceFileMapper.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); return job.waitForCompletion(true) ? 0 : 1; } public static void main(String[] args) throws Exception { args=new String[]{"c:/wordcount/smallinput","c:/wordcount/smallout"}; int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(), args); System.exit(exitCode); } }
自定义outputFormat
需求
现有一些原始日志需要做增强解析处理,流程:
1、 从原始日志文件中读取数据
2、 根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志
3、 如果成功增强,则输出到增强结果目录;如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录
2.2 分析
程序的关键点是要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义outputformat来实现
2.3 实现
实现要点:
1、 在mapreduce中访问外部资源
2、 自定义outputformat,改写其中的recordwriter,改写具体输出数据的方法write()
代码实现如下:
数据库获取数据的工具
package cn.itcast.bigdata.mr.logenhance; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; import java.util.HashMap; import java.util.Map; public class DBLoader { public static void dbLoader(Map<String, String> ruleMap) throws Exception { Connection conn = null; Statement st = null; ResultSet res = null; try { Class.forName("com.mysql.jdbc.Driver"); conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/urldb", "root", "root"); st = conn.createStatement(); res = st.executeQuery("select url,content from url_rule"); while (res.next()) { ruleMap.put(res.getString(1), res.getString(2)); } } finally { try{ if(res!=null){ res.close(); } if(st!=null){ st.close(); } if(conn!=null){ conn.close(); } }catch(Exception e){ e.printStackTrace(); } } } }
package cn.itcast.bigdata.mr.logenhance; import java.io.IOException; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * maptask或者reducetask在最终输出时,先调用OutputFormat的getRecordWriter方法拿到一个RecordWriter * 然后再调用RecordWriter的write(k,v)方法将数据写出 * * @author * */ public class LogEnhanceOutputFormat extends FileOutputFormat<Text, NullWritable> { @Override public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException { FileSystem fs = FileSystem.get(context.getConfiguration()); Path enhancePath = new Path("D:/temp/en/log.dat"); Path tocrawlPath = new Path("D:/temp/crw/url.dat"); FSDataOutputStream enhancedOs = fs.create(enhancePath); FSDataOutputStream tocrawlOs = fs.create(tocrawlPath); return new EnhanceRecordWriter(enhancedOs, tocrawlOs); } /** * 构造一个自己的recordwriter * * @author * */ static class EnhanceRecordWriter extends RecordWriter<Text, NullWritable> { FSDataOutputStream enhancedOs = null; FSDataOutputStream tocrawlOs = null; public EnhanceRecordWriter(FSDataOutputStream enhancedOs, FSDataOutputStream tocrawlOs) { super(); this.enhancedOs = enhancedOs; this.tocrawlOs = tocrawlOs; } @Override public void write(Text key, NullWritable value) throws IOException, InterruptedException { String result = key.toString(); // 如果要写出的数据是待爬的url,则写入待爬清单文件 /logenhance/tocrawl/url.dat if (result.contains("tocrawl")) { tocrawlOs.write(result.getBytes()); } else { // 如果要写出的数据是增强日志,则写入增强日志文件 /logenhance/enhancedlog/log.dat enhancedOs.write(result.getBytes()); } } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { if (tocrawlOs != null) { tocrawlOs.close(); } if (enhancedOs != null) { enhancedOs.close(); } } } }
package cn.itcast.bigdata.mr.logenhance; import java.io.IOException; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class LogEnhance { static class LogEnhanceMapper extends Mapper<LongWritable, Text, Text, NullWritable> { Map<String, String> ruleMap = new HashMap<String, String>(); Text k = new Text(); NullWritable v = NullWritable.get(); // 从数据库中加载规则信息倒ruleMap中 @Override protected void setup(Context context) throws IOException, InterruptedException { try { DBLoader.dbLoader(ruleMap); } catch (Exception e) { e.printStackTrace(); } } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 获取一个计数器用来记录不合法的日志行数, 组名, 计数器名称 Counter counter = context.getCounter("malformed", "malformedline"); String line = value.toString(); String[] fields = StringUtils.split(line, " "); try { String url = fields[26]; String content_tag = ruleMap.get(url); // 判断内容标签是否为空,如果为空,则只输出url到待爬清单;如果有值,则输出到增强日志 if (content_tag == null) { k.set(url + " " + "tocrawl" + " "); context.write(k, v); } else { k.set(line + " " + content_tag + " "); context.write(k, v); } } catch (Exception exception) { counter.increment(1); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(LogEnhance.class); job.setMapperClass(LogEnhanceMapper.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); // 要控制不同的内容写往不同的目标路径,可以采用自定义outputformat的方法 job.setOutputFormatClass(LogEnhanceOutputFormat.class); FileInputFormat.setInputPaths(job, new Path("D:/srcdata/webloginput/")); // 尽管我们用的是自定义outputformat,但是它是继承制fileoutputformat // 在fileoutputformat中,必须输出一个_success文件,所以在此还需要设置输出path FileOutputFormat.setOutputPath(job, new Path("D:/temp/output/")); // 不需要reducer job.setNumReduceTasks(0); job.waitForCompletion(true); System.exit(0); } }