• CF1601C Optimal Insertion


    CF1601C Optimal Insertion

    题目

    题目描述

    You are given two arrays of integers $ a_1, a_2, ldots, a_n $ and $ b_1, b_2, ldots, b_m $ .

    You need to insert all elements of $ b $ into $ a $ in an arbitrary way. As a result you will get an array $ c_1, c_2, ldots, c_{n+m} $ of size $ n + m $ .

    Note that you are not allowed to change the order of elements in $ a $ , while you can insert elements of $ b $ at arbitrary positions. They can be inserted at the beginning, between any elements of $ a $ , or at the end. Moreover, elements of $ b $ can appear in the resulting array in any order.

    What is the minimum possible number of inversions in the resulting array $ c $ ? Recall that an inversion is a pair of indices $ (i, j) $ such that $ i < j $ and $ c_i > c_j $ .

    输入格式

    Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 leq t leq 10^4 $ ). Description of the test cases follows.

    The first line of each test case contains two integers $ n $ and $ m $ ( $ 1 leq n, m leq 10^6 $ ).

    The second line of each test case contains $ n $ integers $ a_1, a_2, ldots, a_n $ ( $ 1 leq a_i leq 10^9 $ ).

    The third line of each test case contains $ m $ integers $ b_1, b_2, ldots, b_m $ ( $ 1 leq b_i leq 10^9 $ ).

    It is guaranteed that the sum of $ n $ for all tests cases in one input doesn't exceed $ 10^6 $ . The sum of $ m $ for all tests cases doesn't exceed $ 10^6 $ as well.

    输出格式

    For each test case, print one integer — the minimum possible number of inversions in the resulting array $ c $ .

    题意翻译

    题目大意

    给定两个序列 (a,b),长度分别为 (n,m(1leq n,mleq 10^6))。接下来将 (b) 中的所有元素以任意方式插入序列 (a)任意位置,请找出一种插入方式使结果序列中的逆序对数量最小化,并输出这个最小值。

    关于插入:任意方式插入任意位置的示例如下。

    例如 (a={1,2,3,4},b={4,5,6}),则 (c={4,underline1,5,underline2,underline3,underline4,6},{underline1,underline2,6,5,underline3,4,underline4}dots) 均为合法的插入方式。但你不能修改 (a) 的顺序。

    输入格式

    本题多测(注意多测不清空爆零两行泪

    第一行给定一个正整数 (t (1leq tleq 10^4)) 表示数据组数.

    接下来对于每组数据,第一行两个整数 (n,m (1leq n,mleq 10^6)) 分别表示 (a,b) 的长度。

    第二行包括 (n) 个整数,表示 (a)

    第三行包括 (m) 个整数,表示 (b)

    保证 (1leq a_i,b_ileq 10^9, 1leq sum n,sum mleq 10^6)

    输出格式

    对于每组数据一行一个整数,表示最小逆序对数。

    输入输出样例

    输入 #1

    3
    3 4
    1 2 3
    4 3 2 1
    3 3
    3 2 1
    1 2 3
    5 4
    1 3 5 3 1
    4 3 6 1
    

    输出 #1

    0
    4
    6
    

    说明/提示

    Below is given the solution to get the optimal answer for each of the example test cases (elements of $ a $ are underscored).

    • In the first test case, $ c = [underline{1}, 1, underline{2}, 2, underline{3}, 3, 4] $ .
    • In the second test case, $ c = [1, 2, underline{3}, underline{2}, underline{1}, 3] $ .
    • In the third test case, $ c = [underline{1}, 1, 3, underline{3}, underline{5}, underline{3}, underline{1}, 4, 6] $ .

    思路

    引理:一定存在一种最优情况,使得(b)(c)中的顺序是单调递增的,即(b)排序后从左到右插入(a)得到(c).

    证明:

    假设我们有序列(ABC),我们有(x < y)且已知将(x)插入到(B,C)之间最优,我们将(y)插入到(A,B)(A,C)之间.

    显然,对于两种方案,(y)(A,C)两段产生的逆序对数量都是一样的.

    (B)段中大于(x)的数字有(g_1)个,小于(x)的数有(s_1)个,则(s_1 ge g_1).(因为(x)插入到(BC)之间最优)

    (B)段中大于(y)的数字有(g_2)个,小于(y)的数有(s_2)个,则(g_2 le g_1,s_2ge s_1).(因为(y>x))

    所以(s_2 ge g_2),又因为(y)(x)之前会产生一个((y,x))的逆序对,所以(y)放在(AB)之间不如放在(BC)之间优.

    综上,(x)插入的位置之后一定存在一个位置,使得(y)放在该位置后产生最少的逆序对.

    证毕.

    所以,我们求一个(pos_i)表示(b_i)(排序后)插入到(a_i)之后(当(pos_i)等于(0)时,插入到(a)的最前端).

    可知,(pos)是一个单调递增的数组.

    因此,我们设(solve(l_1,r_1,l_2,r_2))求解将(b_{l_1ldots r_1})插入到(a_{l_2ldots r_2})中的答案.

    我们取(mid = frac 12 (l_1+r_1)),用(O(r_2-l_2))的时间求出(pos_{mid}),然后递归:(solve(l_1,mid-1,l_2,pos_{mid}))(solve(mid+1,r_1,pos_{mid},r_2)).

    得到(pos)之后,树状数组求逆序对即可.

    递归次数不超过(O(m)),(solve)的时间复杂度即(O(n log m)),树状数组求逆序对的时间复杂度为(O((n+m)log(n+m))).

    代码

    用VScode观看体验更佳

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    
    //#define int long long
    typedef long long ll;
    
    int read() {
    	int re = 0;
    	char  c = getchar();
    	bool negt = false;
    	while(c < '0' ||c > '9')
    		negt |= (c == '-') , c = getchar();
    	while(c >= '0' && c <= '9')
    		re = (re << 1) + (re << 3) + c - '0' , c = getchar();
    	return negt ? -re : re;
    }
    
    const int N = 1000010;
    
    struct TreeArray {
    #define lowbit(_) ((_) & -(_))
    	ll a[N * 2];//注意数组大小
    	int n;
    	void set(int n_) {
    		n = n_;
    		for(int i = 0 ; i <= n ; i++)a[i] = 0;
    	}
    	void change(int pos , int dat) {
    		if(pos == 0)return;
    		for( ; pos <= n ; pos += lowbit(pos))a[pos] += dat;
    	}
    	ll GetSum(int r) {
    		ll sum = 0;
    		for( ; r > 0 ; r -= lowbit(r))sum += a[r];
    		return sum;
    	}
    	ll GetSum(int l , int r) {
    		return GetSum(r) - GetSum(l - 1);
    	}
    };
    
    int n , m;
    int a[N] , b[N];
    int pos[N];
    
    void discretize() {//离散化
    	static int tmp[N * 2];
    	int siz = 0;
    	for(int i = 1 ; i <= n ; i++)tmp[++siz] = a[i];
    	for(int i = 1 ; i <= m ; i++)tmp[++siz] = b[i];
    	std::sort(tmp + 1 , tmp + siz + 1);
    	siz = std::unique(tmp + 1 , tmp + siz + 1) - tmp - 1;
    	for(int i = 1 ; i <= n ; i++)
    		a[i] = std::upper_bound(tmp + 1 , tmp + siz + 1 , a[i]) - tmp - 1;
    	for(int i = 1 ; i <= m ; i++)
    		b[i] = std::upper_bound(tmp + 1 , tmp + siz + 1 , b[i]) - tmp - 1;
    }
    
    
    #define divideOptimize 1
    #if divideOptimize
    int pre , suf;
    TreeArray statis;
    void divide(int l1 , int r1 , int l2 , int r2) {
    	if(l1 > r1)return;
    	int mid = (l1 + r1) / 2;
    	pos[mid] = l2;
    
        ll inversionNum = (1ll << 60);
        suf = pre = 0;
        for(int i = l2 ; i <= r2 ; i++)suf = suf + (a[i] < b[mid] && i != 0);
        for(int i = l2 ; i <= r2 ; i++) {
            if(inversionNum > suf + pre)
                inversionNum = suf + pre , pos[mid] = i - 1;
            pre += (a[i] > b[mid] && i != 0);
            suf -= (a[i] < b[mid] && i != 0);
        }
        if(inversionNum > suf + pre)
            inversionNum = suf + pre , pos[mid] = r2;
    
    	divide(l1 , mid - 1 , l2 , pos[mid]);
    	divide(mid + 1 , r1 , pos[mid] , r2);
    }
    #else
    TreeArray pre , suf;//这里不小心写了个log^2的分治函数,T飞
    void divide(int l1 , int r1 , int l2 , int r2) {
    	if(l1 > r1)return;
    	int mid = (l1 + r1) / 2;
    	pos[mid] = l2;
    
    	pre.change(a[l2] , 1) , suf.change(a[l2] , -1);
    	int inversionNum = pre.GetSum(b[mid] + 1 , n + m) + suf.GetSum(b[mid] - 1);
    	for(int i = l2 + 1 ; i <= r2 ; i++) {
    		pre.change(a[i] , 1) , suf.change(a[i] , -1);
    		int newNum = pre.GetSum(b[mid] + 1 , n + m) + suf.GetSum(b[mid] - 1);
    		if(newNum < inversionNum) {
    			inversionNum = newNum;
    			pos[mid] = i;
    		}
    	}
    
    	for(int i = l2 ; i <= r2 ; i++)pre.change(a[i] , -1) , suf.change(a[i] , 1);
    
    	divide(l1 , mid - 1 , l2 , pos[mid]);
    	pre.change(a[pos[mid]] , -1) , suf.change(a[pos[mid]] , 1);
    	divide(mid + 1 , r1 , pos[mid] , r2);
    }
    #endif
    
    void solve() {
    	n = read() , m = read();
    	for(int i = 1 ; i <= n ; i++)a[i] = read();
    	for(int i = 1 ; i <= m ; i++)b[i] = read();
    
    	discretize();
    	std::sort(b + 1 , b + m + 1);
    
    #if !divideOptimize
    	suf.set(n + m) , pre.set(n + m);
    	for(int i = 1 ; i <= n ; i++)
    		suf.change(a[i] , 1);
    #endif
    	divide(1 , m , 0 , n);
    
    	statis.set(n + m);//统计逆序对数量
    	ll ans = 0;
    	int j = 1;
    	for(int i = 1 ; i <= n ; i++) {
    		while(j <= m && pos[j] < i)ans += statis.GetSum(b[j] + 1 , n + m) , statis.change(b[j] , 1) , ++j;
    		ans += statis.GetSum(a[i] + 1 , n + m) , statis.change(a[i] , 1);
    	}
    	while(j <= m) ans += statis.GetSum(b[j] + 1 , n + m) , statis.change(b[j] , 1) , ++j;
    	printf("%lld
    " , ans);
    }
    signed main() {
    	int T = read();
    	while(T--)
    		solve();
    	return 0;
    }
    /*
    1
    7 1
    13 2 6 4 12 7 11
    10
    
    */
    
    
  • 相关阅读:
    四.Oracle聚合函数和内外全连接
    三.Oracle常用数据类型及单行函数总结
    二.Sql语言的分类及运算符
    一.Oracle的安装与连接
    Maven环境的配置
    javaSE基础总结篇04
    javaSE基础总结篇03
    javaSE基础总结篇02
    JavaSE基础篇总结01
    表分区
  • 原文地址:https://www.cnblogs.com/dream1024/p/15501298.html
Copyright © 2020-2023  润新知