• Codeforces 559C Gerald and Giant Chess【组合数学】【DP】


    LINK


    题目大意

    有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数

    思路

    考虑容斥
    先把所有黑点按照x值进行排序方便计算
    (dp_{i})表示从起点走到第i个黑点不经过任何的黑点的方案数
    然后(dp_{i}=C(x_i+y_i-2,x_i-1)-sum_{j|x_jleq x_i,y_jleq y_i}dp_{j} imes C(j->i))
    这样容斥为什么是正确的,(dp_{j})考虑了所有经过j的情况,其他的包含j的点都不会考虑j的贡献
    所以容斥是正确的


    //Author: dream_maker
    #include<bits/stdc++.h>
    using namespace std;
    //----------------------------------------------
    //typename
    typedef long long ll;
    //convenient for
    #define fu(a, b, c) for (int a = b; a <= c; ++a)
    #define fd(a, b, c) for (int a = b; a >= c; --a)
    #define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
    //inf of different typename
    const int INF_of_int = 1e9;
    const ll INF_of_ll = 1e18;
    //fast read and write
    template <typename T>
    void Read(T &x) {
      bool w = 1;x = 0;
      char c = getchar();
      while (!isdigit(c) && c != '-') c = getchar();
      if (c == '-') w = 0, c = getchar();
      while (isdigit(c)) {
        x = (x<<1) + (x<<3) + c -'0';
        c = getchar();
      }
      if (!w) x = -x;
    }
    template <typename T>
    void Write(T x) {
      if (x < 0) {
        putchar('-');
        x = -x; 
      }
      if (x > 9) Write(x / 10);
      putchar(x % 10 + '0');
    }
    //----------------------------------------------
    const int N = 2e5 + 10;
    const int Mod = 1e9 + 7;
    int fac[N], inv[N];
    int w, h, n, dp[N];
    //dp表示不经过任何黑点走到第i个黑点的方案数
    struct Point {
      int x, y;
    } p[N];
    bool cmp(Point a, Point b) {
      return a.x == b.x ? a.y < b.y : a.x < b.x;
    }
    int add(int a, int b) {
      return (a += b) >= Mod ? a - Mod : a;
    }
    int sub(int a, int b) {
      return (a -= b) < 0 ? a + Mod : a;
    }
    int mul(int a, int b) {
      return 1ll * a * b % Mod;
    }
    int fast_pow(int a, int b) {
      int res = 1;
      while (b) {
        if (b & 1) res = mul(res, a);
        a = mul(a, a);
        b >>= 1;
      }
      return res;
    }
    int C(int a, int b) {
      return mul(fac[a], mul(inv[b], inv[a - b]));
    }
    void init(int len) {
      fac[0] = inv[0] = 1;
      fu(i, 1, len) fac[i] = mul(fac[i - 1], i);
      fu(i, 1, len) inv[i] = fast_pow(fac[i], Mod - 2);
    }
    int main() {
      Read(h), Read(w), Read(n);
      init(h + w);
      fu(i, 1, n) Read(p[i].x), Read(p[i].y);
      sort(p + 1, p + n + 1, cmp);
      fu(i, 1, n) {
        dp[i] = C(p[i].x + p[i].y - 2, p[i].x - 1);
        fu(j, 1, i - 1)
          if (p[j].y <= p[i].y)
            dp[i] = sub(dp[i], mul(dp[j], C(p[i].x - p[j].x + p[i].y - p[j].y, p[i].x - p[j].x)));
      }
      int ans = C(h + w - 2, h - 1);
      fu(i, 1, n) ans = sub(ans, mul(dp[i], C(h - p[i].x + w - p[i].y, h - p[i].x)));
      Write(ans);
      return 0;
    }
    
  • 相关阅读:
    scla-基础-函数-元组(0)
    scala-基础-映射(1)
    Scala-基础-数组(1)
    Scala-基础-函数(2)
    Scala-基础-函数(1)
    Scala-基础-流程控制语句
    Scala-基础-运算符
    机器猫工作笔记(持续更新中...)
    收集的URL
    苹果审核指南(中文)
  • 原文地址:https://www.cnblogs.com/dream-maker-yk/p/9818471.html
Copyright © 2020-2023  润新知