• scala-spark练手--dataframe数据可视化初稿


    成品:http://www.cnblogs.com/drawwindows/p/5640606.html

    初稿:
    import org.apache.spark.sql.hive.HiveContext
    import org.apache.spark.{Logging, SparkConf, SparkContext}
    import org.apache.spark.sql.{DataFrame, Row, SaveMode, _}
    import com.alibaba.fastjson.{JSON, JSONObject}
    import org.apache.hadoop.conf.Configuration
    import org.apache.hadoop.fs.{FileSystem, Path}
    
    import scala.collection.mutable.ArrayBuffer
    
    object DataFrameVisiualize extends Logging {
    
      def runforstatistic(hiveContext: HiveContext, params: JSONObject) = {
        val arr = params.getJSONArray("targetType")
        var i = 0
        while( i < arr.size()){
          val obj = arr.getJSONObject(i)
          if("dataset".equalsIgnoreCase(obj.getString("targetType"))){
            val tableNameKey = obj.getString("targetName")
            val tableName = params.getString(tableNameKey)
            val user = params.getString("user")
            run(hiveContext, tableName, user)
          }
          i = i+1
        }
      }
    
      def run(hiveContext: HiveContext, tableName: String, user: String) = {
        val pathParent = s"/user/$user/mlaas/tableStatistic/$tableName"
    //    val conf = new SparkConf().setAppName("DataFrameVisiualizeJob")
    //    val sc = new SparkContext(conf)
    //    val hiveContext = new HiveContext(sc)
    //    val sqlContext = new SQLContext(sc)
        //0.获取DB的schema信息
        val schemadf = hiveContext.sql("desc " + tableName)
        //schema信息落地
        val filePathSchema = pathParent + "/schemajson"
        schemadf.write.mode(SaveMode.Overwrite).format("json").save(filePathSchema)
    
        //1.加载表到dataframe
        val df = hiveContext.sql("select * from " + tableName)
        //2.获取dataframe的describe信息,默认为获取到的都为数值型列
        val dfdesc = df.describe()
        //    //3.描述信息落地
        //    val filePath = pathParent + "/describejson"
        //    des.write.mode(SaveMode.Overwrite).format("json").save(filePath)
        //    val dfdesc = sqlContext.read.format("json").load(filePath)
    
        //4.列信息区分为mathColArr 和 strColArr
        val mathColArr = dfdesc.columns.filter(!_.equalsIgnoreCase("summary"))
        val (colMin, colMax, colMean, colStddev, colMedian) = getDesfromDF(dfdesc, mathColArr)
        val allColArr = df.columns
    
        val strColArr = allColArr.filter(!_.equalsIgnoreCase("summary")).diff(mathColArr)
    
    
        saveRecords(hiveContext, tableName, 100, pathParent + "/recordsjson")
        val jsonobj = getAllStatistics(hiveContext, tableName, allColArr, strColArr, mathColArr, 10, colMin, colMax)
    
        jsonobj.put("colMin", colMin)
        jsonobj.put("colMax", colMax)
        jsonobj.put("colMean", colMean)
        jsonobj.put("colStddev", colStddev)
        jsonobj.put("colMedian", colMedian)
    
        val jsonStr = jsonobj.toString
        val conf1 = new Configuration()
        val fs = FileSystem.get(conf1)
        val fileName = pathParent + "/jsonObj"
        val path = new Path(fileName)
        val hdfsOutStream = fs.create(path)
        hdfsOutStream.writeBytes(jsonStr)
        hdfsOutStream.flush()
        hdfsOutStream.close()
        //    fs.close();
    
      }
    
      def saveRecords(hiveContext: HiveContext, tableName: String, num: Int, filePath: String) : Unit = {
        hiveContext.sql(s"select * from $tableName limit $num").write.mode(SaveMode.Overwrite).format("json").save(filePath)
      }
      /**
        * 根据allCols, mathColArr, strColArr 三个数组,返回带有所有统计信息(除去已经根据describe获取到的)的dataframes。
        * 返回的dataframe结果进行遍历,填充各个属性的值。
        */
      def getAllStatistics(hiveContext: HiveContext, tableName: String, allColArr: Array[String], strColArr: Array[String], mathColArr: Array[String], partNum: Int, colMin: java.util.HashMap[String, Double], colMax: java.util.HashMap[String, Double]) :
      JSONObject = {
        val jsonobj = new JSONObject()
        val sb = new StringBuffer()
        sb.append("select ")
        for(col <- allColArr){
          sb.append(s"count(distinct($col)) as unique_$col , sum(case when $col is null then 1 else 0 end) as missing_$col, ")
        }
        sb.append(s"sum(1) as totalrows from $tableName")
        val df = hiveContext.sql(sb.toString)
        val colUnique = new java.util.HashMap[String, Long]//唯一值
        val colMissing = new java.util.HashMap[String, Long]//缺失值
        df.take(1).foreach(row => (jsonobj.put("totalrows", row.getAs[Long]("totalrows")),allColArr.foreach(col => (colUnique.put(col, row.getAs[Long]("unique_"+col)),colMissing.put(col, row.getAs[Long]("missing_"+col))) ) ))
    
        val dfArr = ArrayBuffer[DataFrame]()
        val strHistogramSql = new StringBuffer()
        strHistogramSql.append(s"""
             SELECT tta.colName, tta.value, tta.num
             FROM (
             SELECT ta.colName, ta.value, ta.num, ROW_NUMBER() OVER (PARTITION BY ta.colName ORDER BY ta.num DESC) AS row
             FROM (
          """)
    
        var vergin = 0
        for(col <- strColArr){
          if(vergin == 1){
            strHistogramSql.append(" UNION ALL ")
          }
          vergin = 1
          strHistogramSql.append(s"""
          SELECT 'StrHistogram_$col' AS colName, $col AS value, COUNT(1) AS num
          FROM $tableName
            GROUP BY $col """)
        }
        strHistogramSql.append(s"""
          ) ta
          ) tta
          WHERE tta.row <= $partNum
          """)
        val dfStrHistogram =  hiveContext.sql(strHistogramSql.toString)
        dfArr.append(dfStrHistogram)
        for(col <- mathColArr){
          val df1 =  hiveContext.sql(s"select 'Quartile_$col' as  colName, ntil, max($col) as  num from (select $col,  ntile(4) OVER (order by $col)as ntil from $tableName) tt group by ntil ")
          log.info("col is :" + col + ", min is :" + colMin.get(col) + ", max is : " + colMax.get(col))
          //need toString first, then toDouble。 or:ClassCastException
          val min = colMin.get(col).toString.toDouble
          val max = colMax.get(col).toString.toDouble
          val df2 =  getHistogramMathDF(col, hiveContext, tableName, min, max, partNum)
          dfArr.append(df1)
          dfArr.append(df2)
        }
        val dfAll = dfArr.reduce(_.unionAll(_))
        val allRows = dfAll.collect()
        val mathColMapQuartile = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]] //四分位
        val mathColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]]//条形图
        val strColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]]//条形图
        val (mathColMapQuartile1, mathColMapHistogram1, strColMapHistogram1) = readRows(allRows)
        for(col <- strColArr){
          strColMapHistogram.put(col,strColMapHistogram1.get(col).toArray[java.util.HashMap[String,Long]])
        }
        for(col <- mathColArr){
          mathColMapQuartile.put(col,mathColMapQuartile1.get(col).toArray[java.util.HashMap[String,Long]])
          mathColMapHistogram.put(col,mathColMapHistogram1.get(col).toArray[java.util.HashMap[String,Long]])
        }
        jsonobj.put("mathColMapQuartile", mathColMapQuartile)
        jsonobj.put("mathColMapHistogram", mathColMapHistogram)
        jsonobj.put("strColMapHistogram", strColMapHistogram)
        jsonobj.put("colUnique", colUnique)
        jsonobj.put("colMissing", colMissing)
        jsonobj
      }
      def readRows(rows: Array[Row]) : (java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] , java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]], java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]])={
        val mathColMapQuartile = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] //四分位
        val mathColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//条形图
        val strColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//条形图
        rows.foreach( row => {
          val colName = row.getAs[String]("colName")
          if (colName.startsWith("StrHistogram")) {
            val value = row.getAs[String](1)
            val num = row.getAs[Long](2)
            val map = new java.util.HashMap[String, Long]()
            val col = colName.substring(colName.indexOf('_') + 1)
            map.put(value, num)
            val mapValue = strColMapHistogram.get(col)
            if (mapValue == null) {
              val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
              mapValueNew.append(map)
              strColMapHistogram.put(col, mapValueNew)
            } else {
              mapValue.append(map)
              strColMapHistogram.put(col, mapValue)
            }
          } else if (colName.toString.startsWith("Quartile")) {
            val value = row.getAs[String](1)
            val num = row.getAs[Long](2)
            val map = new java.util.HashMap[String, Long]()
            val col = colName.substring(colName.indexOf('_') + 1)
            map.put(value, num)
            val mapValue = mathColMapQuartile.get(col)
            if (mapValue == null) {
              val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
              mapValueNew.append(map)
              mathColMapQuartile.put(col, mapValueNew)
            } else {
              mapValue.append(map)
              mathColMapQuartile.put(col, mapValue)
            }
          } else if (colName.toString.startsWith("MathHistogram")) {
            val value = row.getAs[String](1)
            val num = row.getAs[Long](2)
            val map = new java.util.HashMap[String, Long]()
            val col = colName.substring(colName.indexOf('_') + 1)
            map.put(value, num)
            val mapValue = mathColMapHistogram.get(col)
            if (mapValue == null) {
              val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
              mapValueNew.append(map)
              mathColMapHistogram.put(col, mapValueNew)
            } else {
              mapValue.append(map)
              mathColMapHistogram.put(col, mapValue)
            }
          }
        })
        (mathColMapQuartile, mathColMapHistogram, strColMapHistogram)
      }
      /** 数值型的列的条形分布获取方法*/
      def getHistogramMathDF(col : String, hiveContext: HiveContext, tableName: String, min: Double, max: Double, partNum: Int) : DataFrame = {
        val len = (max - min) / partNum
        log.info(s"len is : $len")
        val sb = new StringBuffer()
        sb.append(s"select $col, (case ")
        val firstRight = min + len
        sb.append(s" when ($col >= $min and $col <= $firstRight) then 1 ")
        for (i <- 2 until (partNum + 1)) {
          val left = min + len * (i - 1)
          val right = min + len * i
          sb.append(s" when ($col > $left and $col <= $right) then $i ")
        }
        sb.append(s" else 0  end ) as partNum from $tableName")
        sb.insert(0, s"select 'MathHistogram_$col' as colName, partNum, count(1) as num from ( ")
        sb.append(") temptableScala group by partNum")
        log.info("getHistogram is: " + sb.toString)
        val df = hiveContext.sql(sb.toString)
        df
      }
      def getDesfromDF(dfdesc : DataFrame, mathColArr: Array[String]):
      (java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double])= {
        val allRows = dfdesc.collect()
        val colMin = new java.util.HashMap[String, Double]//最小值
        val colMax = new java.util.HashMap[String, Double]//最大值
        val colMean = new java.util.HashMap[String, Double]//平均值
        val colStddev = new java.util.HashMap[String, Double]//标准差
        val colMedian = new java.util.HashMap[String, Double]//中位值
        allRows.foreach(row => {
          val mapKey = row.getAs[String]("summary")
          for(col <- mathColArr){
            if("mean".equalsIgnoreCase(mapKey)){
              colMean.put(col, row.getAs[Double](col))
            }else if("stddev".equalsIgnoreCase(mapKey)){
              colStddev.put(col, row.getAs[Double](col))
            }else if("min".equalsIgnoreCase(mapKey)){
              log.info("col is " + col +", min is : "+ row.getAs[Double](col))
              colMin.put(col, row.getAs[Double](col))
            }else if("max".equalsIgnoreCase(mapKey)){
              log.info("col is " + col +", max is : "+ row.getAs[Double](col))
              colMax.put(col, row.getAs[Double](col))
            }else{
              colMedian.put(col, row.getAs[Double](col))
            }
          }
        })
        (colMin, colMax, colMean, colStddev, colMedian)
      }
    }
  • 相关阅读:
    C#构造函数
    C#析构函数
    C#常量
    C#属性
    checklistbox的用法
    2012快捷键
    查询ORACLE存储关联表
    UltraDropDown
    Linux常用命令大全(非常全!!!)
    infra 仪表盘效果
  • 原文地址:https://www.cnblogs.com/drawwindows/p/5444012.html
Copyright © 2020-2023  润新知