• Count the Trees[HDU1131]


    Count the Trees

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1248    Accepted Submission(s): 812

     

    Problem Description
    Another common social inability is known as ACM (Abnormally Compulsive Meditation). This psychological disorder is somewhat common among programmers. It can be described as the temporary (although frequent) loss of the faculty of speech when the whole power of the brain is applied to something extremely interesting or challenging.
    Juan is a very gifted programmer, and has a severe case of ACM (he even participated in an ACM world championship a few months ago). Lately, his loved ones are worried about him, because he has found a new exciting problem to exercise his intellectual powers, and he has been speechless for several weeks now. The problem is the determination of the number of different labeled binary trees that can be built using exactly n different elements.

     

    For example, given one element A, just one binary tree can be formed (using A as the root of the tree). With two elements, A and B, four different binary trees can be created, as shown in the figure.

     

     

    If you are able to provide a solution for this problem, Juan will be able to talk again, and his friends and family will be forever grateful.

     

     

     

    Input
    The input will consist of several input cases, one per line. Each input case will be specified by the number n ( 1 ≤ n ≤ 100 ) of different elements that must be used to form the trees. A number 0 will mark the end of input and is not to be processed.
     

     

    Output
    For each input case print the number of binary trees that can be built using the n elements, followed by a newline character.
     

     

    Sample Input
    1
    2
    10
    25
    0
     

     

    Sample Output
    1
    4
    60949324800
    75414671852339208296275849248768000000
     

     

    Source
    UVA
     

     

    Recommend
    Eddy

    If the N nodes are the same,there are h[N] different kinds of shapes.h[N] is the n-th Catalan Number.Now the N nodes are labled from 1 to N,so frac(N) should be multiplied.

    #include<iostream>
    using namespace std;
    #ifndef HUGEINT
    #define HUGEINT
    #include<string>
    using namespace std;
    class hugeint
    {
      friend istream operator>> (istream&,hugeint&);
      friend ostream operator<< (ostream&,hugeint&);
      public:
        hugeint()
        {
          len=0;
          memset(num,0,sizeof(num));
        }
        hugeint(int x)
        {
        int p;
    	  memset(num,0,sizeof(num));
          p=x;
          len=0;
          while (p>0)
          {
            len++;
            num[len]=p%10;
            p/=10;
          }
        }
        hugeint(string s)
        {
        int i;
          len=s.size();
          for (i=1;i<=len;i++)
            num[i]=int(s[len-i])-48;
        }
        istream& operator >> (istream& is)
        {
        int i;
          is>>s;
          len=s.size();
          for (i=1;i<=len;i++)
            num[i]=int(s[len-i])-48;
          return is;
        }
        ostream& operator << (ostream& os)
        {
        int i;
          for (i=len;i>=1;i--)
            cout<<num[i];
          return os;
        }
        void clear()
        {
        int i;
          for (i=1;i<=len;i++)
          {
            num[i+1]+=num[i]/10;
            num[i]%=10;
          }
          while ((num[len]==0)&&(len>1)) len--;
        }
        int compare(hugeint t)
        {
        int i;
          (*this).clear();
          t.clear();
          if (len>t.len)  return 1;
          if (len<t.len) return -1;
          for (i=len;i>=1;i--)
          {
            if (num[i]>t.num[i])  return 1;
            if (num[i]<t.num[i]) return -1;
          }
          return 0;
        }
        hugeint operator = (hugeint t)
        {
        int i;
          len=t.len;
          for (i=1;i<=len;i++)
            num[i]=t.num[i];
          return *this;
        }
        hugeint operator + (hugeint t)
        {
        int i;
          if (t.len>len) len=t.len;
          for (i=1;i<=t.len;i++) num[i]+=t.num[i];
          len++;
          (*this).clear();
          return *this;
        }
        hugeint operator - (hugeint t)
        {
        hugeint temp;
        int i;
          if ((*this).compare(t)<0)
          {
            temp=t;
            t=(*this);
          }
          else temp=(*this);
          for (i=1;i<=temp.len;i++)
          {
            temp.num[i+1]--;
            temp.num[i]+=(10-t.num[i]);
          }
          temp.clear();
          return temp;
        }
        hugeint operator * (hugeint t)
        {
        hugeint temp;
        int i,j;
          for (i=1;i<=(*this).len;i++)
            for (j=1;j<=t.len;j++)
              temp.num[i+j-1]+=(*this).num[i]*t.num[j];
          temp.len=(*this).len+t.len;
          temp.clear();
          return temp;
        }
        hugeint operator / (hugeint t)
        {
        hugeint c=0,d=0;
        int i,j,p;
          c.len=(*this).len; d.len=1;
          for (j=(*this).len;j>=1;j--)
          {
            d.len++;
            for (p=d.len;p>=2;p--)
              d.num[p]=d.num[p-1];
            d.num[1]=(*this).num[j];
            while (d.compare(t)>=0)
            {
              c.num[j]++;
              d=d-t;
            }
          }
          c.clear();
          d.clear();
          return c;
        }
        hugeint operator % (hugeint t)
        {
        hugeint c,d;
        int i,j,p;
          for (i=1;i<=1000;i++) c.num[i]=0;
          for (i=1;i<=1000;i++) d.num[i]=0;
          c.len=len; d.len=1;
          for (j=len;j>=1;j--)
          {
            d.len++;
            for (p=d.len;p>=2;p--)
              d.num[p]=d.num[p-1];
            d.num[1]=num[j];
            while (d.compare(t)>=0)
            {
              c.num[j]++;
              d=d-t;
            }
          }
          c.clear();
          d.clear();
          return d;
        }
      hugeint operator ++ ()
      {
        (*this)=(*this)+1;
        return *this;
      }
      hugeint operator -- ()
      {
        (*this)=(*this)-1;
        return *this;
      }
      hugeint operator += (hugeint t)
      {
        (*this)=(*this)+t;
        return *this;
      }
      hugeint operator -= (hugeint t)
      {
        (*this)=(*this)-t;
        return *this;
      }
      hugeint operator *= (hugeint t)
      {
        (*this)=(*this)*t;
        return *this;
      }
      hugeint operator /= (hugeint t)
      {
        (*this)=(*this)/t;
        return *this;
      }
      hugeint operator %= (hugeint t)
      {
        (*this)=(*this)%t;
        return *this;
      }
      bool operator == (hugeint t)
      {
      int i;
        if (len!=t.len) return false;
        for (i=1;i<=len;i++)
        if (num[i]!=t.num[i]) return false;
        return true;
      }
      bool operator >= (hugeint t)
      {
      int x;
        x=(*this).compare(t);
        if (x>=0) return true;
        return false;
      }
      bool operator <= (hugeint t)
      {
      int x;
        x=(*this).compare(t);
        if (x<=0) return true;
        return false;
      }
      bool operator > (hugeint t)
      {
      int x;
        x=(*this).compare(t);
        if (x>0) return true;
        return false;
      }
      bool operator < (hugeint t)
      {
      int x;
        x=(*this).compare(t);
        if (x<0) return true;
        return false;
      }
      ~hugeint() {}
      private:
        int num[1001];
        int len;
        string s;
    };
    #endif
    hugeint h[125];
    hugeint frac[125];
    int i,N;
    int main()
    {
    	frac[0]=1;
    	h[0]=1;
    	for (i=1;i<=100;i++) frac[i]=frac[i-1]*i;
    	for (i=1;i<=100;i++)
    	{
    		h[i]=h[i-1]*(4*i-2);
    		hugeint tmp=i+1;
    		h[i]=h[i]/tmp;
    	}
    	while (scanf("%d",&N)!=EOF)
    	{
    		if (N==0) return 0;
    		hugeint ans=frac[N]*h[N];
    		ans<<cout;
    		cout<<endl;
    	}
    	return 0;
    }
    

     

  • 相关阅读:
    同步手绘板——将View的内容映射成Bitmap转图片导出
    同步手绘板——关于二维码连接
    同步手绘板——PC端实现画板
    同步手绘板——二维码验证登录
    同步手绘板——android端取色
    同步手绘板——android端下笔后颜色变化
    同步手绘板——重点难点及实现想法
    Beta版总结会议
    团队成员绩效评分
    2015/6/9 站立会议以及索引卡更新
  • 原文地址:https://www.cnblogs.com/dramstadt/p/3224735.html
Copyright © 2020-2023  润新知