Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums toT.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
思路:
把重复的数字看做一个整体,只能出现0-重复次数遍。 这个代码特别慢,不知道为什么 550ms
class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { vector<vector<int>> ans; if(num.empty()) return ans; sort(num.begin(), num.end()); //从小到大排序 recursion(ans, num, 0 , target); return ans; } void recursion( vector<vector<int> > &ans, vector<int> candidates, int k, int target) { static vector<int> partans; if(target == 0) //如果partans中数字的总和已经达到目标, 压入答案 { ans.push_back(partans); return; } if(k >= candidates.size() || target < 0) return; int num = candidates[k]; int copy = 0; while(k < candidates.size() && candidates[k] == num) { k++; copy++; } recursion(ans, candidates, k, target); //不压入当前数字 for(int i = 1; i <= copy; i++) { partans.push_back(num); //压入当前数字 recursion(ans, candidates, k , target - i * num); //后面只压入大于当前数字的数,避免重复 } //恢复数据 while(!partans.empty() && partans.back() == num) { partans.pop_back(); } } };
大神的13ms代码,感觉和我的差距不大,为什么速度快这么多。
class Solution { vector <int> path; vector < vector <int> > res; public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { sort(num.begin(), num.end()); gen(0, target, num); return res; } void gen(int index, int sum, vector <int> &nums) { if (sum == 0) { res.push_back(path); return; } for (int i = index; i < nums.size(); i++) { //只压入序号大于等于i的数字 避免重复 if (sum - nums[i] < 0) return; if (i && nums[i] == nums[i - 1] && index < i) continue; //每次递归相同的数字只压入一次 path.push_back(nums[i]); //这里不需要不压入nums[i]的情况,因为循环到后面时自然就是未压入该数的情况了 gen(i + 1, sum - nums[i], nums); path.pop_back(); } } };