• elasticsearchdsl聚合2


    接续上篇,本篇介绍elasticsearch聚合查询,使用python库elasticsearch-dsl进行聚合查询操作。

    条形图

    聚合有一个令人激动的特性就是能够十分容易地将数据转换成图表和图形。

      • 创建直方图需要指定一个区间,如果我们要为售价创建一个直方图,可以将间隔设为 20,000。这样做将会在每个 $20,000 档创建一个新桶,然后文档会被分到对应的桶中。
         1 GET cars/transactions/_search
         2 {
         3   "size": 0,
         4   "aggs": {
         5     "price": {
         6       "histogram": {
         7         "field": "price",
         8         "interval": 20000
         9       },
        10       "aggs": {
        11         "revenue": {
        12           "sum": {
        13             "field": "price"
        14           }
        15         }
        16       }
        17     }
        18   }
        19 }
        1 s = Search(index='cars')
        2 s.aggs.bucket("price", "histogram", field="price", interval=20000).metric("revenue", "sum", field="price")
        3 response = s.execute()

        图形化表示

      • 更强大的统计
         1 GET /cars/transactions/_search
         2 {
         3   "size" : 0,
         4   "aggs": {
         5     "makes": {
         6       "terms": {
         7         "field": "make",
         8         "size": 10
         9       },
        10       "aggs": {
        11         "stats": {
        12           "extended_stats": {
        13             "field": "price"
        14           }
        15         }
        16       }
        17     }
        18   }
        19 }
        1 s = Search(index='cars')
        2 s.aggs.bucket("makes", "terms", field="make", size=10).metric("stats", "extended_stats", field="price")
        3 response = s.execute()
      • 按时间统计(date_histogram),每月销售了多少台汽车?
         1 GET cars/transactions/_search
         2 {
         3   "size": 0,
         4   "aggs": {
         5     "sales": {
         6       "date_histogram": {
         7         "field": "sold",
         8         "interval": "month",
         9         "format": "yyyy-MM-dd",
        10         "extended_bounds": {
        11           "min": "2014-01-01",
        12           "max": "2014-12-31"
        13         }
        14       }
        15     }
        16   }
        17 }
        1 s = Search(index='cars')
        2 s.aggs.bucket("sales", "date_histogram", field="sold", interval="month",
        3                   format="yyyy-MM-dd", extended_bounds={"min": "2014-01-01", "max": "2014-12-31"})
        4 response = s.execute()
      • 计算每个季度所有汽车品牌的销售总额以及每种汽车品牌的销售总额
         1 GET cars/transactions/_search
         2 {
         3   "size": 0,
         4   "aggs": {
         5     "sales": {
         6       "date_histogram": {
         7         "field": "sold",
         8         "interval": "quarter",
         9         "format": "yyyy-MM-dd",
        10         "extended_bounds": {
        11           "min": "2014-01-01",
        12           "max": "2014-12-31"
        13         }
        14       },
        15       "aggs": {
        16         "per_make_sum": {
        17           "terms": {
        18             "field": "make"
        19           },
        20           "aggs": {
        21             "sum_price": {
        22               "sum": {
        23                 "field": "price"
        24               }
        25             }
        26           }
        27         },
        28         "total_sum": {
        29           "sum": {
        30             "field": "price"
        31           }
        32         }
        33       }
        34     }
        35   }
        36 }
        1 s = Search(index='cars')
        2 a1 = A("date_histogram", field="sold", interval="quarter", format="yyyy-MM-dd",
        3            extended_bounds={"min": "2014-01-01", "max": "2014-12-31"})
        4 a2 = A("terms", field="make")
        5 s.aggs.bucket("sales", a1).bucket("per_make_sum", a2).metric("sum_price", "sum", field="price")
        6 s.aggs["sales"].metric("total_sum", "sum", field="price")
        7 response = s.execute()
      • 限定范围的聚合,福特在售车有多少种颜色?
         1 GET cars/transactions/_search
         2 {
         3   "query": {
         4     "match": {
         5       "make": "ford"
         6     }
         7   },
         8   "aggs": {
         9     "colors": {
        10       "terms": {
        11         "field": "make"
        12       }
        13     }
        14   }
        15 }
        1 s = Search(index="cars").query("match", make="ford")
        2 s.aggs.bucket("colors", "terms", field="make")
        3 response = s.execute()
      • 全局桶(全局桶包含所有的文档,它无视查询的范围),比方说我们想知道福特汽车与所有汽车平均售价的比较
         1 GET cars/transactions/_search
         2 {
         3   "query": {
         4     "match": {
         5       "make": "ford"
         6     }
         7   },
         8   "aggs": {
         9     "single_avg_price": {
        10       "avg": {
        11         "field": "price"
        12       }
        13     },
        14     "all": {
        15       "global": {},         --global忽略过滤条件
        16       "aggs": {
        17         "avg_price": {
        18           "avg": {
        19             "field": "price"
        20           }
        21         }
        22       }
        23     }
        24   }
        25 }
        1 s = Search(index="cars").query("match", make="ford")
        2 s.aggs.metric("single_avg_price", "avg", field="price")
        3 s.aggs.bucket("all", "global").metric("avg_price", "avg", field="price")
        4 response = s.execute()
      • 过滤,找到售价在 $10,000 美元之上的所有汽车同时也为这些车计算平均售价
         1 GET cars/transactions/_search
         2 {
         3   "query": {
         4     "constant_score": {
         5       "filter": {
         6         "range": {
         7           "price": {
         8             "gte": 10000
         9           }
        10         }
        11       }
        12     }
        13   },
        14   "aggs": {
        15     "single_avg_price": {
        16       "avg": {
        17         "field": "price"
        18       }
        19     }
        20   }
        21 }
        1 s = Search(index="cars").query("range", price={"gte": 10000})
        2 s.aggs.metric("single_avg_price", "avg", field="price")
        3 response = s.execute()
      • 过滤桶(一种特殊桶),搜索福特汽车在2014年上半年销售汽车的均价
         1 GET /cars/transactions/_search
         2 {
         3    "size" : 0,
         4    "query":{
         5       "match": {
         6          "make": "ford"
         7       }
         8    },
         9    "aggs":{
        10       "recent_sales": {
        11          "filter": { 
        12             "range": {
        13                "sold": {
        14                   "from": "2014-01-01",
        15                   "to": "2014-06-30"
        16                }
        17             }
        18          },
        19          "aggs": {
        20             "average_price":{
        21                "avg": {
        22                   "field": "price" 
        23                }
        24             }
        25          }
        26       }
        27    }
        28 }
        1 s = Search(index="cars").query("match", make="ford")
        2 q = Q("range", sold={"from": "2014-01-01", "to": "2014-06-30"})
        3 s.aggs.bucket("recent_sales", "filter", q).metric("average_price", "avg", field="price")
        4 response = s.execute()
      • 后过滤器(post_filter),只过滤搜索结果,不过滤聚合结果,对聚合没有影响
         1 GET cars/transactions/_search
         2 {
         3   
         4   "query": {
         5     "match": {
         6       "make": "ford"
         7     }
         8   },
         9   "post_filter": {
        10     "term": {
        11       "color": "green"
        12     }
        13   },
        14   "aggs": {
        15     "all_colors": {
        16       "terms": {
        17         "field": "color"
        18       }
        19     }
        20   }
        21 }
        1 s = Search(index="cars").query("match", make="ford").post_filter("term", color="green")
        2 s.aggs.bucket("all_colors", "terms", field="color")
        3 response = s.execute()

    内置排序

    • _count:按文档数排序。对 terms 、 histogram 、 date_histogram 有效
    • _term:按词项的字符串值的字母顺序排序。只在 terms 内使用
    • _key:按每个桶的键值数值排序(理论上与 _term 类似)。 只在 histogram 和 date_histogram 内使用
      • 让我们做一个 terms 聚合但是按 doc_count 值的升序排序
         1 GET cars/transactions/_search
         2 {
         3   "size": 0,
         4   "aggs": {
         5     "colors": {
         6       "terms": {
         7         "field": "color",
         8         "order": {
         9           "_count": "asc"
        10         }
        11       }
        12     }
        13   }
        14 }
        1 s = Search(index="cars")
        2 s.aggs.bucket("colors", "terms", field="color", order={"_count": "asc"})
        3 response = s.execute()
      • 按度量排序,按照汽车颜色分类,再按照汽车平均售价升序排列
         1 GET cars/transactions/_search
         2 {
         3   "size": 0,
         4   "aggs": {
         5     "colors": {
         6       "terms": {
         7         "field": "color",
         8         "order": {
         9           "avg_price": "asc"
        10         }
        11       },
        12       "aggs": {
        13         "avg_price": {
        14           "avg": {
        15             "field": "price"
        16           }
        17         }
        18       }
        19     }
        20   }
        21 }
        1 s = Search(index="cars")
        2 s.aggs.bucket("colors", "terms", field="color", order={"avg_price": "asc"}).metric("avg_price", "avg", field="price")
        3 response = s.execute()
      • 基于“深度”度量排序

    我们可以定义更深的路径,将度量用尖括号( > )嵌套起来,像这样: my_bucket>another_bucket>metric

    需要提醒的是嵌套路径上的每个桶都必须是 单值 的。 filter 桶生成 一个单值桶:所有与过滤条件匹配的文档都在桶中。 多值桶(如:terms )动态生成许多桶,无法通过指定一个确定路径来识别。

    目前,只有三个单值桶: filter global reverse_nested

      • 让我们快速用示例说明,创建一个汽车售价的直方图,但是按照红色和绿色(不包括蓝色)车各自的方差来排序
         1 GET /cars/transactions/_search
         2 {
         3     "size" : 0,
         4     "aggs" : {
         5         "colors" : {
         6             "histogram" : {
         7               "field" : "price",
         8               "interval": 20000,
         9               "order": {
        10                 "red_green_cars>stats.variance" : "asc" 
        11               }
        12             },
        13             "aggs": {
        14                 "red_green_cars": {
        15                     "filter": { "terms": {"color": ["red", "green"]}}, 
        16                     "aggs": {
        17                         "stats": {"extended_stats": {"field" : "price"}} 
        18                     }
        19                 }
        20             }
        21         }
        22     }
        23 }
        1 s = Search(index="cars")
        2 a = A("histogram", field="price", interval=20000, order={"red_green_cars>stats.variance": "asc"})
        3 q = A("filter", filter={"terms": {"color": ["red", "green"]}})
        4 s.aggs.bucket("colors", a).bucket("red_green_cars", q).metric("stats", "extended_stats", field="price")
        5 response = s.execute()

     

     

  • 相关阅读:
    冲刺2 05
    冲刺02 04
    人月神话阅读笔记01
    进度条
    团队冲刺第十天
    团队冲刺第九天
    学习进度条13
    团队冲刺第八天
    怎样买书更便宜
    冲刺第七天
  • 原文地址:https://www.cnblogs.com/dowi/p/10101185.html
Copyright © 2020-2023  润新知