• 大数据学习--之--HBASE理论基础


    Apache HBase简介
    Apache HBase(Hadoop DataBase)是一个高可靠行、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可以在廉价的PC上搭建起大规模结构化存储集群。
    HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用Chubby作为协同服务,HBase利用Zookeeper作为对应。
    HBase是一种"NoSQL"数据库,"NoSQL"是一个通用词表示数据库不是RDBMS,后者支持SQL作为主要访问手段。有许多种NoSQL数据库,比如:BerkeleyDB是本地NoSQL数据库例子,而HBase是大型分布式数据库。从技术上来说,HBase更像是"Data Store(数据存储)"多于"Data Base(数据库)",因为HBase缺少很多RDBMS的特性,如列类型、第二索引、触发器、高级查询语言等。
    然而HBase有许多特征同时支持多元化和模块化扩充。HBase集群通过增加RegionServer进行扩展,而且只需要将它可以放到普通的服务器中即可。例如:如果集群从10扩充到20个RegionServer,存储空间和处理容量都同时翻倍。RDBMS也能进行扩充,但是仅针对某个点---特别是对一个单独数据库服务器的带下---同时,为了更好的性能,需要依赖特殊的硬件和存储设备,而HBase并不需要这些。
    HBase有如下特性:
    ---强一致性读写:HBase不是"eventually consistent(最终一致性)"数据存储,这让它很适合高速计数聚合类任务;
    ---自动分片(Automatic sharding):HBase表通过Region分布在集群中,数据增长时,Region会自动分配并重新分布;
    ---RegionServer自动故障移除;
    ---Hadoop/HDFS集成:HBase支持开箱即用地支持HDFS作为他的分布式文件系统;
    ---MapReduce:HBase通过MapReduce支持大并发处理;
    ---Java客户端API:HBase支持易于使用的JavaAPI进行编程访问;
    ---Thrift/REST API:HBase支持Thirft和REST作为非Java前端的访问;
    ---Block Cache和BloomFilter:对于大容量查询优化,HBase支持Block Cache和 Bloom Filter;
    ---运维管理:HBase支持JMX通过内置网页用于运维。
     
    HBase的应用场景
    首先,HBase不适合所有的场景。
    1.确保有足够多的数据,如果有上亿或者上千亿行数据,HBase是很好的备选。如果只有上千行或者上百万行,则用传统的RDBMS可能是更好的选择。因为所有数据可以在一两个节点保存,集群其他节点可能闲置。
    2.确定可以不依赖左右RDBMS的额外特性(如:列数据类型、第二索引、事务、高级查询语言等)。
    3.确定有足够的硬件,因为HDFS在小于5个数据节点时,基本上体现不出它的优势。
    注:HBase能在单独的笔记本上运行良好,到那时这应仅当成开发阶段的配置。
     
    HBase的数据模型比较简单,数据按照rowkey排序存放,适合HBase存储的数据总结如下:
    ===以实体为中心的数据
    ===以事件为中心的数据
    这些数据有的是结构化数据,有的是半结构或非结构化数据。HBase的“稀疏矩阵”设计,使其对应非结构化数据存储时能够得心应手,但在外面的实际应用场景中,结构化数据存储已然占据了比较重的比例。由于HBase仅提供了基于rowkey的单维度索引能力,在应对一些具体场景时,已然还需要基于哈色之上构建一些专业的能力。
     
    HBase的优缺点
    优点:
    ---列可以动态增加,并且列为空就不存储数据,节省存储空间
    ---自动切分数据,使得数据存储自动具有水平扩展
    ---可以提供高并发读写操作
    ---与Hadoop MapReduce相结合有利于数据分析
    ---容错性好
    ---非常灵活的模式设计(没有固定模式的限制)
    ---可以跟Hive集成,使用累SQL查询
    ---自动故障转移
    ---客户端接口易于适应
    ---行级别原子性,即:PUT操作一定是完全成功或者完全失败
    ---版权免费
     
    缺点:
    ---不能支持条件查询,只支持按照rowkey来查询
    ---容易产生单点故障(在只是用一个HMaster的时候)
    ---不支持事务
    ---JOIN不是数据库层支持的,而需要用MapReduce
    ---稚嫩在主键上索引和排序
    ---没有内置的身份和权限认证
     
    HBase与Hadoop/HDFS的差异
    HDFS是分布式文件系统,适合保存大文件,官方宣称它并非普通用途的文件系统,不提供文件的个别记录和快速查询。另一方面,HBase基于HDFS,并能够提供大表的记录快速查找和更新。这有时可能会引起概念混乱:HBase内部将数据放到索引好的"StoreFiles"存储文件中,以便提供高速查询,而存储文件位于HDFS中。
    问1:HBase中的数据为何不直接存在HDFS上?
    ===HBase中存储的海量数据记录,通常在几百bytes到kb级别,如果将这些数据直接存储到HDFS上,会导致大量的小文件产生,为HDFS的元数据管理节点(NameNode)带来沉重的压力。
    问2:文件能否直接存储于HBase里面?
    ===如果是几Mb的文件,其实也可以直接存储于HBase中,我们暂且将这类文件称之为小文件,HBase提供了一个名为MOB的特性来应对这类小文件的存储。如果是更大的文件,强烈不建议用HBase来存储。
     
    HBase的基本概念
    关于Apache HBase官方定义是:Apache HBase is the Hadoop database, a distributed, scalable, big data store.
    即:HBase是基于Hadoop构建的一个分布式的、可伸缩的、海量数据存储系统。
    在HBase的数据被存储在表中,具有行和列。这和关系型数据库(RDBMS)中的术语重叠,但是在概念上它们不是一类。相反,应该将HBase的表党委是一个多维的map结构,来方便理解。
    1.术语
    ---Table(表):HBase table由多个row组成
    ---Row(行):每一row代表着一个数据对象,每一row都是以一个rowkey和一个或多个column组成。rowkey是每个数据对象的唯一标识,按字母顺序排列,即row也是按照这个顺序来进行存储的。所以rowkey的设计相当重要。一个重要的原则是:相关的row要存储在接近的位置。
    ---Column(列):column由column family和column qualifier组成,由冒号进行间隔。如:family:qualifier。
    ---Column Family(列族):在HBase,column family是一些column的集合。一个column family所有的column成员是有着相同的前缀的。比如,courses:history和courses:math都是courses的成员。冒号(:)是column family的分隔符,用来区分前缀和列名。column前缀必须是可打印的字符,剩下的部分列名可以是任意字节数组,column family必须在table建立时声明。column随时可以新建。在物理上,一个的column family成员在文件系统上都是存储在一起的。因为存储优化都是针对column family级别的,这就意味着,一个column family的所有成员都是用相同的方式访问的。
    ---Column Qualifier(列限定符):column family中的数据通过column qualifier来进行映射。column qualifier也没有特定的数据类型,以二进制字节来存储。虽然column family是在table创建时就固定了,但column qualifier是可变的,可能在不同的row之间有很大的不同。
    ---Cell(单元格):cell是row、column family和column qualifier的组合,包含了一个值和一个timestamp,用于标识值得版本。
    ---TimeStamp(时间戳):每个值都会有一个timestamp,作为该值特定版本的标识。默认情况下,timestamp代表了数据被写入RegionServer的时间,但你也可以在把数据放到cell时,指定不同的timestamp。
     
    2.map
    HBase/BigTable的核心数据结构是map,不同的编程语言针对 map 有不同的术语,比如 associative array(PHP)、associative array(Python),Hash(Ruby)或 Object (JavaScript)。
    简单来说,map 就是 key-value 对集合。下面是一个用 JSON 格式来表达 map 的例子:
    {
    "zzzzz" : "woot",
    "xyz" : "hello",
    "aaaab" : "world",
    "1" : "x",
    "aaaaa" : "y"
    }
     
    3.分布式
    HBase/Bigtable 都是建立在分布式系统上的,HBase 基于 Hadoop Distributed File System (HDFS) 或者 Amazon’s Simple Storage Service(S3),而 Bigtable 使用 Google File System(GFS)。它们要解决的一个问题就是数据的同步。这里不讨论如何做到数据同步。 HBase/Bigtable 可以部署在成千上万的机器上来分散访问压力。
     
    4.排序
    和一般的 map 实现有所区别,HBase/Bigtable 中的 map 是按字母顺序严格排序的。这就是说,对于 row key 是“aaaaa”的旁边 row key 应该是 “aaaab”,而与 row key 是“zzzzz”离得较远。
    还是以上面的 JSON 为例,一个排好序的例子如下:
    {
    "1" : "x",
    "aaaaa" : "y",
    "aaaab" : "world",
    "xyz" : "hello",
    "zzzzz" : "woot"
    }
    在一个大数据量的系统里面,排序很重要,特别是 row key 的设置策略决定了查询的性能。比如网站的域名,row key 就是域名,在设计时要将域名反转(例如,org.apache.www、org.apache.mail、org.apache.jira)。
     
    5.多维
    多维 map,即 map 里面嵌套 map。例如:
     1 {
     2   "1" : {
     3     "A" : "x",
     4     "B" : "z"
     5   },
     6   "aaaaa" : {
     7     "A" : "y",
     8     "B" : "w"
     9   },
    10   "aaaab" : {
    11     "A" : "world",
    12     "B" : "ocean"
    13   },
    14   "xyz" : {
    15     "A" : "hello",
    16     "B" : "there"
    17   },
    18   "zzzzz" : {
    19     "A" : "woot",
    20     "B" : "1337"
    21   }
    22 }
     
    6.时间版本
    在查询中不指定时间,返回的将是最近的一个时间的版本。如果给出 timestamp,返回的将是早于这个时间的数值。例如: 查询 row/column 是“aaaaa”/“A:foo”的,将返回 y;查询 row/column/timestamp 是“aaaaa”/“A:foo”/10的,将返回 m;查询 row/column/timestamp 是“aaaaa”/“A:foo”/2的,将返回 null。
     1 {
     2   // ...
     3   "aaaaa" : {
     4     "A" : {
     5       "foo" : {
     6         15 : "y",
     7         4 : "m"
     8       },
     9       "bar" : {
    10         15 : "d",
    11       }
    12     },
    13     "B" : {
    14       "" : {
    15         6 : "w"
    16         3 : "o"
    17         1 : "w"
    18       }
    19     }
    20   },
    21 // ...
    22 }
    7.概念视图
    下面表格是一个名为 webtable 的 table ,包含了两个 row(com.cnn.www 和 com.example.www)和三个 column family(contents、 anchor和people)。第一个 row(com.cnn.www)中,anchor 包含了两个 column(anchor:cssnsi.com和 anchor:my.look.ca),contents包含了一个 column(contents:html)。在这个例子里面,row key 是com.cnn.www的 row 包含了5个版本,而 row key 是com.example.www的 row 包含了1个版本。column qualifier 为 contents:html包含了给定网站的完整的 HTML。column family 是anchor的每个 qualifier 包含了网站的链接。人们列族代表与网站相关的人。column family 是people关联的是网站的人物资料。
    Row Key Timestamp ColumnFamily contents ColumnFamily anchor ColumnFamily people
    “com.cnn.www” t9   anchor:cnnsi.com = “CNN”  
    “com.cnn.www” t8   anchor:my.look.ca = “CNN.com  
    “com.cnn.www” t6 contents:html = “…”    
    “com.cnn.www” t5 contents:html = “…”    
    “com.cnn.www” t3 contents:html = “…”    
    在这个表中显示为空的 cell 不占用空间,这使得 HBase 变得“稀疏”。除了表格方式来展现数据试图,也使用使用多维 map,如下:
     1 {
     2     "com.cnn.www": {
     3         contents: {
     4         t6: contents:html: "<html>..."
     5       t5: contents:html: "<html>..."
     6       t3: contents:html: "<html>..."
     7     }
     8     anchor: {
     9       t9: anchor:cnnsi.com = "CNN"
    10       t8: anchor:my.look.ca = "CNN.com"
    11     }
    12     people: {}
    13   }
    14   "com.example.www": {
    15     contents: {
    16       t5: contents:html: "<html>..."
    17     }
    18     anchor: {}
    19     people: {
    20       t5: people:author: "John Doe"
    21        }
    22     }
    23 }            
    在这个表中显示为空的 cell 不占用空间,这使得 HBase 变得“稀疏”。除了表格方式来展现数据试图,也使用使用多维 map,如下:
     1 {
     2   "com.cnn.www": {
     3       contents: {
     4         t6: contents:html: "<html>..."
     5         t5: contents:html: "<html>..."
     6         t3: contents:html: "<html>..."
     7       }
     8       anchor: {
     9         t9: anchor:cnnsi.com = "CNN"
    10         t8: anchor:my.look.ca = "CNN.com"
    11       }
    12       people: {}
    13   }
    14   "com.example.www": {
    15       contents: {
    16         t5: contents:html: "<html>..."
    17       }
    18       anchor: {}
    19       people: {
    20         t5: people:author: "John Doe"
    21       }
    22   }
    23 }
    8.物理视图

    尽管在概念视图里,table 可以被看成是一个稀疏的 row 的集合。但在物理上,它的是按照 column family 存储的。新的 column qualifier (column_family:column_qualifier)可以随时添加进已有的 column family 。

    下表是一个 ColumnFamily anchor

    Row Key Timestamp Column Family anchor
    “com.cnn.www” t9 anchor:cnnsi.com = “CNN”
    “com.cnn.www” t8 anchor:my.look.ca = “CNN.com”
    下表是一个 ColumnFamily contents
    Row Key Timestamp ColumnFamily contents:
    “com.cnn.www” t6 contents:html = “…”
    “com.cnn.www” t5 contents:html = “…”
    “com.cnn.www” t3 contents:html = “…”
    值得注意的是在上面的概念视图中空白 cell 在物理上是不存储的,因为根本没有必要存储。因此若一个请求为要获取 t8 时间的contents:html,他的结果就是空。相似的,若请求为获取 t9 时间的anchor:my.look.ca,结果也是空。但是,如果不指明 timestamp,将会返回最新时间的 column。例如,如果请求为获取行键为“com.cnn.www”,没有指明 timestamp 的话,返回的结果是 t6 下的contents:html,t9下的anchor:cnnsi.com和 t8 下anchor:my.look.ca
     
    9.数据模型操作

    四个主要的数据模型操作是 Get、Put、Scan 和 Delete。通过 Table 实例进行操作。有关 Table 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

    Get

    Get 返回特定 row 的属性。 Get 通过 Table.get 执行。有关 Get 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html

    Put

    Put 要么向 table 增加新 row(如果 key 是新的)或更新 row(如果 key 已经存在)。 Put 通过 Table.put(writeBuffer)或 Table.batch(非 writeBuffer)执行。有关 Put 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html

    Scan

    Scan 允许多个 row 特定属性迭代。

    下面是一个在 Table 表实例上的 Scan 示例。假设 table 有几行 row key 为“row1”、“row2”、“row3”,还有一些 row key 值为“abc1”、 “abc2” 和“abc3”。下面的示例展示 Scan 实例如何返回“row”打头的 row。

    public static final byte[] CF = "cf".getBytes();
    public static final byte[] ATTR = "attr".getBytes();
    ...
    
    Table table = ...      // instantiate a Table instance
    
    Scan scan = new Scan();
    scan.addColumn(CF, ATTR);
    scan.setRowPrefixFilter(Bytes.toBytes("row"));
    ResultScanner rs = table.getScanner(scan);
    try {
      for (Result r = rs.next(); r != null; r = rs.next()) {
        // process result...
      }
    } finally {
      rs.close();  // always close the ResultScanner!
    }

    注意,通常最简单的方法来指定用于 scan 停止点是采用 InclusiveStopFilter 类,其 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/InclusiveStopFilter.html

    Delete

    Delete 用于从 table 中删除 row。Delete 通过 Table.delete 执行。有关 Delete 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Delete.html

    HBase 没有修改数据的合适方法。所以 delete 通过创建名为 tombstones 的新标志进行处理。这些 tombstones 和死去的值,会在 major compaction 时清除掉。

    参考引用

    原文地址:https://blog.csdn.net/kkkloveyou/article/details/52518325

    ***********************

    心得之谈:欢迎指正,一起学习。

    ***********************

     
  • 相关阅读:
    字符数组+数组复习
    C语言博客作业05-指针
    C语言博客作业04 数组
    C语言博客作业03 函数
    Java与C# socket通信
    JDBC复制数据库(sqlite)
    mysql Connector/net不能更新或删除(转载)
    MATLAB回归、插值、逼近、拟合【转载】
    前端请求RestController发送数据方法汇总
    elementUI el-input 输入框 设置高度和宽度
  • 原文地址:https://www.cnblogs.com/donsenChen/p/9267449.html
Copyright © 2020-2023  润新知