多叉
有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1。我们用一根树枝两端连接的结点的编号来描述一根树枝的位置 。
数据规模:
对于20%的数据,满足1 <= n <=15。
对于40%的数据,满足1 <= n <=100。
对于100%的数据,满足1 <= n <=310,c<=2^31-1。
两道树形DP题,一样的代码改下细节就能过,令f[x][y]表示以x为根的子树保留y条边最多苹果数,易得出状态转移方程
f[x][[t]=max(f[x][t] , f[x][t-j-1] + f[y][j]+edge[i])
其中y是x的子节点,edge[i]表示x->y这条边上的苹果树,用f[x][t-j-1]而不是f[x][t-j]是因为我们还要保留x->y这条边,最后01背包倒序枚举即可。
二叉苹果树代码
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=110;
int n,q,f[maxn][maxn];
int head[maxn],Next[2*maxn],ver[2*maxn],edge[2*maxn],tot,u,v,z;
void add(int x,int y,int z){
ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
}
void dp(int x,int fa){
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(y==fa) continue;
dp(y,x);
for(int t=q;t>=1;--t){
for(int j=t-1;j>=0;--j){
f[x][t]=max(f[x][t],f[x][t-j-1]+f[y][j]+edge[i]);
}
}
}
}
int main(){
scanf("%d %d",&n,&q);
for(int i=1;i<n;++i){
scanf("%d %d %d",&u,&v,&z);
add(u,v,z);
add(v,u,z);
}
dp(1,0);
printf("%d",f[1][q]);
return 0;
}
多叉苹果树代码
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=330;
int n,q;
long long f[maxn][maxn];
int head[maxn],Next[2*maxn],ver[2*maxn],edge[2*maxn],tot,u,v,z;
void add(int x,int y,int z){
ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
}
void dp(int x,int fa){
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(y==fa) continue;
dp(y,x);
for(int t=q;t>=1;--t){
for(int j=t-1;j>=0;--j){
f[x][t]=max(f[x][t],f[x][t-j-1]+f[y][j]+(long long)edge[i]);
}
}
}
}
int main(){
scanf("%d %d",&n,&q);
for(int i=1;i<n;++i){
scanf("%d %d %d",&u,&v,&z);
add(u,v,z);
add(v,u,z);
}
dp(1,0);
printf("%lld",f[1][q]);
return 0;
}