• [BZOJ]4198: [Noi2015]荷马史诗


    Time Limit: 10 Sec  Memory Limit: 512 MB

    Description

      追逐影子的人,自己就是影子。 ——荷马

      Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。
      一部《荷马史诗》中有 n 种不同的单词,从 1 到 n 进行编号。其中第 i 种单词出现的总次数为 wi。Allison 想要用 k 进制串 si 来替换第 i 种单词,使得其满足如下要求:
      对于任意的 1≤i,j≤n,i≠j,都有:si 不是 sj 的前缀。
      现在 Allison 想要知道,如何选择 si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 si 的最短长度是多少?
      一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k−1 之间(包括 0 和 k−1)的整数。
      字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 1≤t≤m,使得 Str1=Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。

    Input

      输入文件的第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n 种单词,需要使用 k 进制字符串进行替换。

      接下来 n 行,第 i+1 行包含 1 个非负整数 wi,表示第 i 种单词的出现次数。

    Output

      输出文件包括 2 行。

      第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。
      第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。

    Sample Input

      4 2
      1
      1
      2
      2

    Sample Output

      12
      2

    HINT

      用 X(k) 表示 X 是以 k 进制表示的字符串。
      一种最优方案:令 00(2) 替换第 1 种单词,01(2) 替换第 2 种单词,10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
      1×2+1×2+2×2+2×2=12
      最长字符串 si 的长度为 2。
      一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2) 替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
      1×3+1×3+2×2+2×1=12
      最长字符串 si 的长度为 3。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。
      对于所有数据,保证 2≤n≤100000,2≤k≤9。
      选手请注意使用 64 位整数进行输入输出、存储和计算。

    Solution

      题意相当于让你构造一个深度最小的k叉哈夫曼树。二叉哈夫曼树相信大家都会,贪心,每次选两个权值最小的合并成一个,k叉的话也可以类似的贪心,每次选出最小的k个合并成一个,但如果我们直接这样做,可能会导致最后一次合并不足k个,构造出的不够优,由于每次合并会使节点减少k-1个,我们只要让$nequiv 1 (mod k-1)$即可保证最后一次也有k个,我们多加一些权值为0的节点即可,要保证深度最小,只要合并权值相同的时候选深度较小的先合并即可。

    Code

    #include<cstdio>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define ll long long
    inline ll read()
    {
        ll x;char c;
        while((c=getchar())<'0'||c>'9');
        for(x=c-'0';(c=getchar())>='0'&&c<='9';)x=x*10+c-'0';
        return x;
    }
    #define MN 100000
    #define p pair<ll,int>
    #define mp(x,y) make_pair(x,y)
    priority_queue< p,vector<p>,greater<p> > pq;
    int main()
    {
        int n,k,i;ll x,ans=0;
        n=read();k=read();
        while(n--)pq.push(mp(read(),0));
        while((pq.size()-1)%(k-1))pq.push(mp(0,0));
        while(pq.size()>1)
        {
            for(i=x=n=0;i<k;++i)x+=pq.top().first,n=max(n,pq.top().second+1),pq.pop();
            ans+=x;pq.push(mp(x,n));
        }
        printf("%lld
    %d",ans,pq.top().second);
    }
  • 相关阅读:
    统计学_筛选试验
    ROC、PR 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)、F1 score
    阳/阴性预测值Positive/negative Predictive Value(推荐AA)
    统计学_样本量估计_python代码实现
    统计学_效应量Effect Size
    统计学_二型错误和功效(Type II Errors and Test Power)
    统计学的P值解释和误区
    【线性代数的几何意义】向量的基本几何意义
    【线性代数的几何意义】什么是线性代数
    【Eclipse】如何在Eclipse中使用命令行?
  • 原文地址:https://www.cnblogs.com/ditoly/p/BZOJ4198.html
Copyright © 2020-2023  润新知