• FastAPI官方教程太棒了(上)


    Python第三流行的Web框架

    在2020年的Python开发者调查结果中,有这样一段话:“FastAPI在此次调查迭代中首次被引为选项,表现为Python第三流行的Web框架。”

    FastAPI创立于2018年12月,不到2年就成为仅次于Flask和Django的第三流行的Web框架。而又经过了一年发展来到2022年,虽然2021年Python开发者调查结果还没有出来,但是从GitHub的star来看,Flask 58.7k,Django 63.6k,FastAPI 44.2k,这个差距缩得越来越小。

    FastAPI特性

    这里就不做机器翻译了,大家看下原文:

    我说下我选择FastAPI的理由:首先就是HttpRunner集成了FastAPI,有大佬背书,相信这个框架足以优秀。其次是注解,用多了SpringBoot以后,越来越喜欢注解,层次清晰。对于前后端分离项目来说,Flask虽然非常精简却又自带了Jinja模板引擎,Django虽然是百宝箱却又显得太重,而FastAPI介于两者之间,就是一个纯粹的后端应用。并且FastAPI是基于Starlette框架的,集成了实用功能比如类型检查、OpenAPI(Swagger)等等,这跟我基于pytest框架做tep测试工具的理念很相似。

    安装

    对Python版本要求是3.6+。

    先安装FastAPI:

    pip install fastapi
    

    再安装ASGI服务器,比如Uvicorn:

    pip install "uvicorn[standard]"
    

    也可以同时安装fastapi和uvicorn:

    pip install "fastapi[all]"
    

    运行

    写个main.py文件:

    from typing import Optional
    
    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/")
    def read_root():
        return {"Hello": "World"}
    
    
    @app.get("/items/{item_id}")
    def read_item(item_id: int, q: Optional[str] = None):
        return {"item_id": item_id, "q": q}
    

    在命令行输入启动应用:

    uvicorn main:app --reload
    

    main是Python模块名。

    appapp = FastAPI()

    --reload在代码变化时自动重启服务器。

    打开浏览器访问:

    http://127.0.0.1:8000/items/5?q=somequery

    就能看到JSON响应:

    {"item_id": 5, "q": "somequery"}
    

    访问:

    http://127.0.0.1:8000/docs

    就能看到Swagger接口文档:

    pydantic

    pydantic是一个数据验证的库,FastAPI使用它来做模型校验。比如:

    from typing import Optional
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        price: float
        is_offer: Optional[bool] = None
    
    
    @app.get("/")
    def read_root():
        return {"Hello": "World"}
    
    
    @app.get("/items/{item_id}")
    def read_item(item_id: int, q: Optional[str] = None):
        return {"item_id": item_id, "q": q}
    
    
    @app.put("/items/{item_id}")
    def update_item(item_id: int, item: Item):
        return {"item_name": item.name, "item_id": item_id}
    

    Item是个入参模型,它的name必须str类型,price必须float类型,is_offer是可选的,可以为bool类型或不传。

    PUT http://127.0.0.1:8000/items/6
    {
        "name": "dongfanger",
        "price": 2.3,
        "is_offer":  true
    }
    
    
    {
        "item_name": "dongfanger",
        "item_id": 6
    }
    

    路径参数

    把路径参数传递给函数:

    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/items/{item_id}")
    async def read_item(item_id):
        return {"item_id": item_id}
    

    也可以指定Python类型:

    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/items/{item_id}")
    async def read_item(item_id: int):
        return {"item_id": item_id}
    

    效果是访问 http://127.0.0.1:8000/items/foo 会返回{"item_id":"foo"}

    指定了Python类型后,FastAPI会强制检查,比如传str会报错:

    http://127.0.0.1:8000/items/foo

    {
        "detail": [
            {
                "loc": [
                    "path",
                    "item_id"
                ],
                "msg": "value is not a valid integer",
                "type": "type_error.integer"
            }
        ]
    }
    

    传float也会报错:

    http://127.0.0.1:8000/items/4.2

    匹配先后顺序

    代码定义的先后顺序会决定匹配结果,比如正常来说,下面的/users/me会返回{"user_id": "the current user"}

    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/users/me")
    async def read_user_me():
        return {"user_id": "the current user"}
    
    
    @app.get("/users/{user_id}")
    async def read_user(user_id: str):
        return {"user_id": user_id}
    

    假如这2个path定义顺序反过来,那么/users/me就会匹配到/users/{user_id}而返回{"user_id": me}了。

    枚举路径

    借助于Enun类,可以实现枚举路径:

    from enum import Enum
    
    from fastapi import FastAPI
    
    
    class ModelName(str, Enum):
        alexnet = "alexnet"
        resnet = "resnet"
        lenet = "lenet"
    
    
    app = FastAPI()
    
    
    @app.get("/models/{model_name}")
    async def get_model(model_name: ModelName):
        if model_name == ModelName.alexnet:
            return {"model_name": model_name, "message": "Deep Learning FTW!"}
    
        if model_name.value == "lenet":
            return {"model_name": model_name, "message": "LeCNN all the images"}
    
        return {"model_name": model_name, "message": "Have some residuals"}
    

    效果:

    path匹配

    FastAPI提供了一个path类型,可以用来对文件路径进行格式匹配:

    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/files/{file_path:path}")
    async def read_file(file_path: str):
        return {"file_path": file_path}
    

    查询参数

    查询参数是跟在路径参数后面,用?分隔用&连接的参数,比如http://127.0.0.1:8000/items/?skip=0&limit=10

    实现:

    from fastapi import FastAPI
    
    app = FastAPI()
    
    fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}]
    
    
    @app.get("/items/")
    async def read_item(skip: int = 0, limit: int = 10):
        return fake_items_db[skip : skip + limit]
    

    参数是可选的并且设置了默认值:limit: int = 10

    参数是可选的,无默认值:limit: Optional[int] = None

    注意:是否可选是由None来决定的,而Optional只是为编译器提供支持,跟FastAPI没有关系。

    参数是必填的:limit: int

    请求体

    FastAPI的请求体借助于pydantic来实现:

    from typing import Optional
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    
    class Item(BaseModel):
        name: str
        description: Optional[str] = None
        price: float
        tax: Optional[float] = None
    
    
    app = FastAPI()
    
    
    @app.post("/items/")
    async def create_item(item: Item):
        return item
    

    继承于BaseModel来自定义Model,FastAPI会自动转换为JSON。

    Pydantic PyCharm Plugin插件提高编码体验:

    • auto-completion
    • type checks
    • refactoring
    • searching
    • inspections

    路径参数+查询参数+请求体

    总结一下,在函数参数中,url path中定义的叫做路径参数,没有定义的叫做查询参数,类型是pydantic model的叫做请求体,FastAPI会根据这套规则来自动识别:

    from typing import Optional
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    
    class Item(BaseModel):
        name: str
        description: Optional[str] = None
        price: float
        tax: Optional[float] = None
    
    
    app = FastAPI()
    
    
    @app.put("/items/{item_id}")
    async def create_item(item_id: int, item: Item, q: Optional[str] = None):
        result = {"item_id": item_id, **item.dict()}
        if q:
            result.update({"q": q})
        return result
    

    查询参数字符串校验

    FastAPI提供了Query来支持对入参的字符串校验,比如最小长度和最大长度:

    from typing import Optional
    
    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(
        q: Optional[str] = Query(None, min_length=3, max_length=50, regex="^fixedquery$")
    ):
        results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
        if q:
            results.update({"q": q})
        return results
    

    甚至其中也能包含正则表达式:regex="^fixedquery$"

    用Query时指定默认值:

    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(q: str = Query("fixedquery", min_length=3)):
        results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
        if q:
            results.update({"q": q})
        return results
    

    用Query时必填:

    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(q: str = Query(..., min_length=3)):
        results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
        if q:
            results.update({"q": q})
        return results
    

    查询参数传list

    from typing import List, Optional
    
    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(q: Optional[List[str]] = Query(None)):
        query_items = {"q": q}
        return query_items
    

    指定默认值:

    from typing import List
    
    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(q: List[str] = Query(["foo", "bar"])):
        query_items = {"q": q}
        return query_items
    

    url就像这样:http://localhost:8000/items/?q=foo&q=bar

    指定别名,比如http://127.0.0.1:8000/items/?item-query=foobaritems中的item-query不是Python变量命名,那么可以设置别名:

    from typing import Optional
    
    from fastapi import FastAPI, Query
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(q: Optional[str] = Query(None, alias="item-query")):
        results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
        if q:
            results.update({"q": q})
        return results
    

    路径参数数字校验

    查询参数用Query做字符串(String)校验,路径参数用Path做数字(Numeric)校验:

    from fastapi import FastAPI, Path
    
    app = FastAPI()
    
    
    @app.get("/items/{item_id}")
    async def read_items(
        *,
        item_id: int = Path(..., title="The ID of the item to get", gt=0, le=1000),
        q: str,
    ):
        results = {"item_id": item_id}
        if q:
            results.update({"q": q})
        return results
    

    路径参数永远都是必填的,因为它是url一部分。...表示必填,就算设置为None也没有用,仍然是必填。

    ge表示大于等于,greater equal。

    le表示小于等于,less equal。

    gt表示大于,greater than。

    lt表示小于,less than。

    请求体-多参数

    一、如果请求体嵌套了多个JSON:

    {
        "item": {
            "name": "Foo",
            "description": "The pretender",
            "price": 42.0,
            "tax": 3.2
        },
        "user": {
            "username": "dave",
            "full_name": "Dave Grohl"
        }
    }
    

    那么就需要在FastAPI中定义多参数:

    from typing import Optional
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Optional[str] = None
        price: float
        tax: Optional[float] = None
    
    
    class User(BaseModel):
        username: str
        full_name: Optional[str] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item, user: User):
        results = {"item_id": item_id, "item": item, "user": user}
        return results
    

    这里定义了2个Model:Item和User。

    二、而如果多个参数中有个参数只是单个值,比如这里的importance

    {
        "item": {
            "name": "Foo",
            "description": "The pretender",
            "price": 42.0,
            "tax": 3.2
        },
        "user": {
            "username": "dave",
            "full_name": "Dave Grohl"
        },
        "importance": 5
    }
    

    那么定义成变量并赋值= Body()即可:

    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item, user: User, importance: int = Body()):
        results = {"item_id": item_id, "item": item, "user": user, "importance": importance}
        return results
    

    三、在只有一个Item的时候,FastAPI默认会接收这样的body:

    {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2
    }
    

    假如想把item也放到JSON中:

    {
        "item": {
            "name": "Foo",
            "description": "The pretender",
            "price": 42.0,
            "tax": 3.2
        }
    }
    

    那么可以使用Body(embed=True))

    from typing import Union
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item = Body(embed=True)):
        results = {"item_id": item_id, "item": item}
        return results
    

    请求体-字段

    Pydantic提供了Field来给body中的字段添加额外校验:

    from typing import Union
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel, Field
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = Field(
            default=None, title="The description of the item", max_length=300
        )
        price: float = Field(gt=0, description="The price must be greater than zero")
        tax: Union[float, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item = Body(embed=True)):
        results = {"item_id": item_id, "item": item}
        return results
    

    跟FastAPI提供的QueryPathBody作用类似。

    请求体-嵌套模型

    传List:

    from typing import List, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: List[str] = []
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    

    传Set,自动去重:

    from typing import Set, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: Set[str] = set()
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    

    传Model:

    from typing import Set, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Image(BaseModel):
        url: str
        name: str
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: Set[str] = set()
        image: Union[Image, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    

    入参会像这样:

    {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2,
        "tags": ["rock", "metal", "bar"],
        "image": {
            "url": "http://example.com/baz.jpg",
            "name": "The Foo live"
        }
    }
    

    对于url,pydantic提供了HttpUrl来做校验:

    class Image(BaseModel):
        url: HttpUrl
        name: str
    

    传Model的List:

    from typing import List, Set, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel, HttpUrl
    
    app = FastAPI()
    
    
    class Image(BaseModel):
        url: HttpUrl
        name: str
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: Set[str] = set()
        images: Union[List[Image], None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    

    入参像这样:

    {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2,
        "tags": [
            "rock",
            "metal",
            "bar"
        ],
        "images": [
            {
                "url": "http://example.com/baz.jpg",
                "name": "The Foo live"
            },
            {
                "url": "http://example.com/dave.jpg",
                "name": "The Baz"
            }
        ]
    }
    

    添加示例请求

    通过Configschema_extra添加示例请求:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
    
        class Config:
            schema_extra = {
                "example": {
                    "name": "Foo",
                    "description": "A very nice Item",
                    "price": 35.4,
                    "tax": 3.2,
                }
            }
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    

    在使用以下任一时,都可以添加example:

    • Path()
    • Query()
    • Header()
    • Cookie()
    • Body()
    • Form()
    • File()

    比如:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel, Field
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str = Field(example="Foo")
        description: Union[str, None] = Field(default=None, example="A very nice Item")
        price: float = Field(example=35.4)
        tax: Union[float, None] = Field(default=None, example=3.2)
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
        results = {"item_id": item_id, "item": item}
        return results
    
    from typing import Union
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(
        item_id: int,
        item: Item = Body(
            example={
                "name": "Foo",
                "description": "A very nice Item",
                "price": 35.4,
                "tax": 3.2,
            },
        ),
    ):
        results = {"item_id": item_id, "item": item}
        return results
    
    from typing import Union
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(
        *,
        item_id: int,
        item: Item = Body(
            examples={
                "normal": {
                    "summary": "A normal example",
                    "description": "A **normal** item works correctly.",
                    "value": {
                        "name": "Foo",
                        "description": "A very nice Item",
                        "price": 35.4,
                        "tax": 3.2,
                    },
                },
                "converted": {
                    "summary": "An example with converted data",
                    "description": "FastAPI can convert price `strings` to actual `numbers` automatically",
                    "value": {
                        "name": "Bar",
                        "price": "35.4",
                    },
                },
                "invalid": {
                    "summary": "Invalid data is rejected with an error",
                    "value": {
                        "name": "Baz",
                        "price": "thirty five point four",
                    },
                },
            },
        ),
    ):
        results = {"item_id": item_id, "item": item}
        return results
    

    额外数据类型

    FastAPI除了支持常见的数据类型:

    • int
    • float
    • str
    • bool

    还支持额外的数据类型:

    • UUID
    • datetime.datetime
    • datetime.date
    • datetime.time
    • datetime.timedelta
    • frozenset
    • bytes
    • Decimal

    示例:

    from datetime import datetime, time, timedelta
    from typing import Union
    from uuid import UUID
    
    from fastapi import Body, FastAPI
    
    app = FastAPI()
    
    
    @app.put("/items/{item_id}")
    async def read_items(
        item_id: UUID,
        start_datetime: Union[datetime, None] = Body(default=None),
        end_datetime: Union[datetime, None] = Body(default=None),
        repeat_at: Union[time, None] = Body(default=None),
        process_after: Union[timedelta, None] = Body(default=None),
    ):
        start_process = start_datetime + process_after
        duration = end_datetime - start_process
        return {
            "item_id": item_id,
            "start_datetime": start_datetime,
            "end_datetime": end_datetime,
            "repeat_at": repeat_at,
            "process_after": process_after,
            "start_process": start_process,
            "duration": duration,
        }
    

    Cookie

    from typing import Union
    
    from fastapi import Cookie, FastAPI
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(ads_id: Union[str, None] = Cookie(default=None)):
        return {"ads_id": ads_id}
    

    QueryPath用法类似。

    Header

    from typing import Union
    
    from fastapi import FastAPI, Header
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(user_agent: Union[str, None] = Header(default=None)):
        return {"User-Agent": user_agent}
    

    多重header用List,比如:

    from typing import Union
    
    from fastapi import FastAPI, Header
    
    app = FastAPI()
    
    
    @app.get("/items/")
    async def read_items(user_agent: Union[str, None] = Header(default=None)):
        return {"User-Agent": user_agent}
    
    X-Token: foo
    X-Token: bar
    
    {
        "X-Token values": [
            "bar",
            "foo"
        ]
    }
    

    响应模型

    通过response_model定义返回模型:

    from typing import List, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: List[str] = []
    
    
    @app.post("/items/", response_model=Item)
    async def create_item(item: Item):
        return item
    

    response_model的作用是对函数返回值进行过滤,比如:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel, EmailStr
    
    app = FastAPI()
    
    
    class UserIn(BaseModel):
        username: str
        password: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    class UserOut(BaseModel):
        username: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    @app.post("/user/", response_model=UserOut)
    async def create_user(user: UserIn):
        return user
    

    函数返回值是UserIn模型的对象user,而response_model的值为UserOut(UserOut相比于UserIn来说,没有password),那么FastAPI的响应,就是用UserOut对UserIn进行了过滤,返回的是没有password的UserOut。

    响应模型可以返回默认值:

    from typing import List, Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: float = 10.5
        tags: List[str] = []
    
    
    items = {
        "foo": {"name": "Foo", "price": 50.2},
        "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
        "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
    }
    
    
    @app.get("/items/{item_id}", response_model=Item, response_model_exclude_unset=True)
    async def read_item(item_id: str):
        return items[item_id]
    

    response_model_exclude_unset=True不返回未显式设置的字段,response_model_exclude_defaults不返回带默认值的字段,response_model_exclude_none不返回None的字段。

    附加模型

    在上面的示例中,UserIn是入参,UserOut是出参,不包含password,但是在实际情况中,还需要第三个模型UserInDB,在存入数据库时,把password进行加密。

    代码实现如下:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel, EmailStr
    
    app = FastAPI()
    
    
    class UserIn(BaseModel):
        username: str
        password: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    class UserOut(BaseModel):
        username: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    class UserInDB(BaseModel):
        username: str
        hashed_password: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    def fake_password_hasher(raw_password: str):
        return "supersecret" + raw_password
    
    
    def fake_save_user(user_in: UserIn):
        hashed_password = fake_password_hasher(user_in.password)
        user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password)
        print("User saved! ..not really")
        return user_in_db
    
    
    @app.post("/user/", response_model=UserOut)
    async def create_user(user_in: UserIn):
        user_saved = fake_save_user(user_in)
        return user_saved
    

    重点是user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password)里面的**user_in.dict()

    user_in是UserIn类的Pydantic模型,它有个dict()方法能返回字典。**是拆包,把字典拆成key value的形式,上面这行代码等价于:

    UserInDB(
        username="john",
        password="secret",
        email="john.doe@example.com",
        full_name=None,
        hashed_password=hashed_password
    )
    

    也相当于:

    UserInDB(
        username = user_dict["username"],
        password = user_dict["password"],
        email = user_dict["email"],
        full_name = user_dict["full_name"],
        hashed_password = hashed_password,
    )
    

    FastAPI的一大设计原则是尽量减少重复代码,所以对于UserIn、UserOut、UserInDB可以把里面的相同字段抽象为一个UserBase,其他Model继承即可:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel, EmailStr
    
    app = FastAPI()
    
    
    class UserBase(BaseModel):
        username: str
        email: EmailStr
        full_name: Union[str, None] = None
    
    
    class UserIn(UserBase):
        password: str
    
    
    class UserOut(UserBase):
        pass
    
    
    class UserInDB(UserBase):
        hashed_password: str
    
    
    def fake_password_hasher(raw_password: str):
        return "supersecret" + raw_password
    
    
    def fake_save_user(user_in: UserIn):
        hashed_password = fake_password_hasher(user_in.password)
        user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password)
        print("User saved! ..not really")
        return user_in_db
    
    
    @app.post("/user/", response_model=UserOut)
    async def create_user(user_in: UserIn):
        user_saved = fake_save_user(user_in)
        return user_saved
    

    response_model除了定义一个Model以外,也能定义多个附加模型。

    比如Union:

    from typing import Union
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class BaseItem(BaseModel):
        description: str
        type: str
    
    
    class CarItem(BaseItem):
        type = "car"
    
    
    class PlaneItem(BaseItem):
        type = "plane"
        size: int
    
    
    items = {
        "item1": {"description": "All my friends drive a low rider", "type": "car"},
        "item2": {
            "description": "Music is my aeroplane, it's my aeroplane",
            "type": "plane",
            "size": 5,
        },
    }
    
    
    @app.get("/items/{item_id}", response_model=Union[PlaneItem, CarItem])
    async def read_item(item_id: str):
        return items[item_id]
    

    比如List:

    from typing import List
    
    from fastapi import FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: str
    
    
    items = [
        {"name": "Foo", "description": "There comes my hero"},
        {"name": "Red", "description": "It's my aeroplane"},
    ]
    
    
    @app.get("/items/", response_model=List[Item])
    async def read_items():
        return items
    

    比如Dict:

    from typing import Dict
    
    from fastapi import FastAPI
    
    app = FastAPI()
    
    
    @app.get("/keyword-weights/", response_model=Dict[str, float])
    async def read_keyword_weights():
        return {"foo": 2.3, "bar": 3.4}
    

    参考资料:

    https://fastapi.tiangolo.com/

  • 相关阅读:
    邁向IT專家成功之路的三十則鐵律 鐵律八:IT人學習之道-基礎功
    邁向IT專家成功之路的三十則鐵律 鐵律七:IT人效率之道-時間管理
    邁向IT專家成功之路的三十則鐵律 鐵律六:求全求盈之道-佈施
    邁向IT專家成功之路的三十則鐵律 鐵律五:IT人穩定發展之道-去除惡習
    邁向IT專家成功之路的三十則鐵律 鐵律四:IT人快速成長之道-複製
    邁向IT專家成功之路的三十則鐵律 鐵律三:IT人長久之道–站對邊
    巧架个人BT服务器
    定制属于自己的自动化安装的linux系统镜像
    如何从Win7中提取制作Windows PE3.0
    将现有Ubuntu系统做成LiveCD
  • 原文地址:https://www.cnblogs.com/df888/p/16340035.html
Copyright © 2020-2023  润新知