原文地址:
https://blog.csdn.net/qq_20135597/article/details/88980975
---------------------------------------------------------------------------------------------
tensorflow中提供了rnn接口有两种,一种是静态的rnn,一种是动态的rnn
通常用法:
1、静态接口:static_rnn
主要使用 tf.contrib.rnn
x = tf.placeholder("float", [None, n_steps, n_input]) x1 = tf.unstack(x, n_steps, 1) lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
静态 rnn 的意思就是在图中创建一个固定长度(n_steps)的网络。这将导致
缺点:
- 生成过程耗时更长,占内存更多,导出的模型更大;
- 无法传递比最初指定的更长的序列(> n_steps)。
优点:
模型中带有某个序列中间台的信息,便与调试。
2、动态接口:dynamic_rnn
主要使用 tf.nn.dynamic_rnn
x = tf.placeholder("float", [None, n_steps, n_input]) lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) outputs,_ = tf.nn.dynamic_rnn(lstm_cell ,x,dtype=tf.float32) outputs = tf.transpose(outputs, [1, 0, 2]) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
动态的tf.nn.dynamic_rnn被执行时,它使用循环来动态构建图形。这意味着
优点:
- 图形创建速度更快,占用内存更少;
- 并且可以提供可变大小的批处理。
缺点:
- 模型中只有最后的状态。
动态rnn的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算
区别:
1、输入输出不同:
dynamic_rnn实现的功能就是可以让不同迭代传入的batch可以是长度不同数据,但同一次迭代一个batch内部的所有数据长度仍然是固定的。例如,第一时刻传入的数据shape=[batch_size, 10],第二时刻传入的数据shape=[batch_size, 12],第三时刻传入的数据shape=[batch_size, 8]等等。
但是static_rnn不能这样,它要求每一时刻传入的batch数据的[batch_size, max_seq],在每次迭代过程中都保持不变。
2、训练方式不同:
具体参见参考文献1
多层LSTM的代码实现对比:
1、静态多层RNN
import tensorflow as tf # 导入 MINST 数据集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True) n_input = 28 # MNIST data 输入 (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST 列别 (0-9 ,一共10类) batch_size = 128 tf.reset_default_graph() # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) gru = tf.contrib.rnn.GRUCell(n_hidden*2) lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden) mcell = tf.contrib.rnn.MultiRNNCell([lstm_cell,gru]) x1 = tf.unstack(x, n_steps, 1) outputs, states = tf.contrib.rnn.static_rnn(mcell, x1, dtype=tf.float32) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) training_iters = 100000 display_step = 10 # 启动session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.reshape((batch_size, n_steps, n_input)) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0: # 计算批次数据的准确率 acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)) step += 1 print (" Finished!") # 计算准确率 for 128 mnist test images test_len = 100 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
2、动态多层RNN
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True) n_input = 28 # MNIST data 输入 (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST 列别 (0-9 ,一共10类) batch_size = 128 tf.reset_default_graph() # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) gru = tf.contrib.rnn.GRUCell(n_hidden*2) lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden) mcell = tf.contrib.rnn.MultiRNNCell([lstm_cell,gru]) outputs,states = tf.nn.dynamic_rnn(mcell,x,dtype=tf.float32)#(?, 28, 256) outputs = tf.transpose(outputs, [1, 0, 2])#(28, ?, 256) 28个时序,取最后一个时序outputs[-1]=(?,256) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) training_iters = 100000 display_step = 10 # 启动session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.reshape((batch_size, n_steps, n_input)) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0: # 计算批次数据的准确率 acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)) step += 1 print (" Finished!") # 计算准确率 for 128 mnist test images test_len = 100 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
【参考文献】:
1、https://www.jianshu.com/p/1b1ea45fab47
2、What's the difference between tensorflow dynamic_rnn and rnn?
------------------------------------------------------------------------