• 干货 | Branch and Price算法求解VRPTW问题(附JAVA代码分享)


    前言

    前两天小编刚忙完手头上的事情,闲了下来,然后顺便研究了一下Branch and Price的算法。刚好,国内目前缺少这种类型算法的介绍和代码实现,今天就给大家分享一下咯。

    代码出自国外一个大神@author mschyns之手。代码没有写调用模块,这一部分是小编后续补上去的,以便大家能运行(真是太贴心啦呜呜呜~还不赶紧转发点赞!)。然后检查了代码,修正了一些bug。

    代码获取方式:关注公众号!

    在公众号后台回复【BPVRPTW】不包括【】即可。

    算法介绍

    该Branch and Price算法由以下几部分组成:

    1. Branch and Bound:分支定界,下界使用Column Generation求解。

    2. Column Generation:列生成算法,求解VRPWTW松弛模型的最优解。

    3. ESPPRC-Label Setting:求解VRPTW的子问题(pricing problem),标号法求解。

    算法的运行效果如下:

    算例用的是标准Solomon25。大部分,一轮Column Generation就能直接得到整数解,可能是巧合。也有部分算例需要branch。

    更改输入算例在Main.java:

    更改算例后同时也要更改客户数,在paramsVRP.java:

    可参考的推文如下

    CPLEX:

    1. 干货 | cplex介绍、下载和安装以及java环境配置和API简单说明

    2. 干货 | JAVA调用cplex求解一个TSP模型详解

    3. 干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程)

    Branch and Bound

    1. 干货 | 10分钟带你全面掌握branch and bound(分支定界)算法-概念篇

    2. 干货 | 10分钟搞懂branch and bound算法的代码实现附带java代码

    3. 干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题

    4. cplex教学 | 分支定界法(branch and bound)解带时间窗的车辆路径规划问题(附代码及详细注释)

    Column Generation

    1. 干货 | 10分钟带你彻底了解Column Generation(列生成)算法的原理附java代码

    2. 运筹学教学|列生成(Column Generation)算法(附代码及详细注释)

    3. 干货 | 10分钟教你使用Column Generation求解VRPTW的线性松弛模型

    4. 干货 | 求解VRPTW松弛模型的Column Generation算法的JAVA代码分享

    ESPPRC

    1. 干货 | VRPTW子问题ESPPRC的介绍及其求解算法的C++代码
    2. 标号法(label-setting algorithm)求解带时间窗的最短路问题

    可参考的文献如下

    BOOK: Desrosiers, Desaulniers, Solomon, "Column Generation", Springer, 2005 (GERAD, 25th anniversary)

    Column generation : chapter 3, Vehicle Routing Problem with Time Windows Brian Kallehauge, Jesper Larsen, Oli B. G, Madsen, and Marius M. Solomon

    Pricing SPPRC : chapter 2, Shortest Path Problems with Resource Constraints 33 Stefan Irnich and Guy Desaulniers

    文献下载请关注公众号!

    在后台回复【BPREF】不包括【】即可下载。

    代码解析如下

    Branch and Bound的过程如下(具体参考此前讲过的算法原理):

      public boolean BBnode(paramsVRP userParam, ArrayList<route> routes,
          treeBB branching, ArrayList<route> bestRoutes, int depth)
          throws IOException {
        // userParam (input) : all the parameters provided by the users (cities,
        // roads...)
        // routes (input) : all (but we could decide to keep only a subset) the
        // routes considered up to now (to initialize the Column generation process)
        // branching (input): BB branching context information for the current node
        // to process (branching edge var, branching value, branching from...)
        // bestRoutes (output): best solution encountered
        int i, j, bestEdge1, bestEdge2, prevcity, city, bestVal;
        double coef, bestObj, change, CGobj;
        boolean feasible;
    
        try {
    
          // check first that we need to solve this node. Not the case if we have
          // already found a solution within the gap precision
          if ((upperbound - lowerbound) / upperbound < userParam.gap)
            return true;
    
          // init
          if (branching == null) { // root node - first call
            // first call - root node
            treeBB newnode = new treeBB();
            newnode.father = null;
            newnode.toplevel = true;
            newnode.branchFrom = -1;
            newnode.branchTo = -1;
            newnode.branchValue = -1;
            newnode.son0 = null;
            branching = newnode;
          }
    
          // display some local info
          if (branching.branchValue < 1)
            System.out.println("
    Edge from " + branching.branchFrom + " to "
                + branching.branchTo + ": forbid");
          else
            System.out.println("
    Edge from " + branching.branchFrom + " to "
                + branching.branchTo + ": set");
          int mb = 1024 * 1024;
          Runtime runtime = Runtime.getRuntime();
          System.out.print("Java Memory=> Total:" + (runtime.totalMemory() / mb)
              + " Max:" + (runtime.maxMemory() / mb) + " Used:"
              + ((runtime.totalMemory() - runtime.freeMemory()) / mb) + " Free: "
              + runtime.freeMemory() / mb);
    
          // Compute a solution for this node using Column generation
          columngen CG = new columngen();
    
          CGobj = CG.computeColGen(userParam, routes);
          // feasible ? Does a solution exist?
          if ((CGobj > 2 * userParam.maxlength) || (CGobj < -1e-6)) { 
            // can only be true when the routes in the solution include forbidden edges (can happen when the BB set branching values)
            System.out.println("RELAX INFEASIBLE | Lower bound: " + lowerbound
                + " | Upper bound: " + upperbound + " | Gap: "
                + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                + depth + " | " + routes.size() + " routes");
            return true; // stop this branch
          }
          branching.lowestValue = CGobj;
    
          // update the global lowerbound when required
          if ((branching.father != null) && (branching.father.son0 != null)
              && branching.father.toplevel) {
            // all nodes above and on the left have been processed=> we can compute
            // a new lowerbound
            lowerbound = (branching.lowestValue > branching.father.son0.lowestValue) ? branching.father.son0.lowestValue
                : branching.lowestValue;
            branching.toplevel = true;
          } else if (branching.father == null) // root node
            lowerbound = CGobj;
    
          if (branching.lowestValue > upperbound) {
            CG = null;
            System.out.println("CUT | Lower bound: " + lowerbound
                + " | Upper bound: " + upperbound + " | Gap: "
                + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                + depth + " | Local CG cost: " + CGobj + " | " + routes.size()
                + " routes");
            return true; // cut this useless branch
          } else {
            // ///////////////////////////////////////////////////////////////////////////
            // check the (integer) feasibility. Otherwise search for a branching
            // variable
            feasible = true;
            bestEdge1 = -1;
            bestEdge2 = -1;
            bestObj = -1.0;
            bestVal = 0;
    
            // transform the path variable (of the CG model) into edges variables
            for (i = 0; i < userParam.nbclients + 2; i++)
              java.util.Arrays.fill(userParam.edges[i], 0.0);
            for (route r : routes) {
              if (r.getQ() > 1e-6) { // we consider only the routes in the current
                                     // local solution
                ArrayList<Integer> path = r.getpath(); // get back the sequence of
                                                       // cities (path for this
                                                       // route)
                prevcity = 0;
                for (i = 1; i < path.size(); i++) {
                  city = path.get(i);
                  userParam.edges[prevcity][city] += r.getQ(); // convert into edges
                  prevcity = city;
                }
              }
            }
    
            // find a fractional edge
            for (i = 0; i < userParam.nbclients + 2; i++) {
              for (j = 0; j < userParam.nbclients + 2; j++) {
                coef = userParam.edges[i][j];
                if ((coef > 1e-6)
                    && ((coef < 0.9999999999) || (coef > 1.0000000001))) {
                  // this route has a fractional coefficient in the solution =>
                  // should we branch on this one?
                  feasible = false;
                  // what if we impose this route in the solution? Q=1
                  // keep the ref of the edge which should lead to the largest
                  // change
                  change = (coef < Math.abs(1.0 - coef)) ? coef : Math.abs(1.0 - coef);
                  change *= routes.get(i).getcost();
                  if (change > bestObj) {
                    bestEdge1 = i;
                    bestEdge2 = j;
                    bestObj = change;
                    bestVal = (Math.abs(1.0 - coef) > coef) ? 0 : 1;
                  }
                }
              }
            }
            CG = null;
    
            if (feasible) {
              if (branching.lowestValue < upperbound) { // new incumbant feasible solution!
                upperbound = branching.lowestValue;
                bestRoutes.clear();
                for (route r : routes) {
                  if (r.getQ() > 1e-6) {
                    route optim = new route();
                    optim.setcost(r.getcost());
                    optim.path = r.getpath();
                    optim.setQ(r.getQ());
                    bestRoutes.add(optim);
                  }
                }
                System.out.println("OPT | Lower bound: " + lowerbound
                    + " | Upper bound: " + upperbound + " | Gap: "
                    + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                    + depth + " | Local CG cost: " + CGobj + " | " + routes.size()
                    + " routes");
                System.out.flush();
              } else
                System.out.println("FEAS | Lower bound: " + lowerbound
                    + " | Upper bound: " + upperbound + " | Gap: "
                    + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                    + depth + " | Local CG cost: " + CGobj + " | " + routes.size()
                    + " routes");
              return feasible;
            } else {
              System.out.println("INTEG INFEAS | Lower bound: " + lowerbound
                  + " | Upper bound: " + upperbound + " | Gap: "
                  + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                  + depth + " | Local CG cost: " + CGobj + " | " + routes.size()
                  + " routes");
              System.out.flush();
              // ///////////////////////////////////////////////////////////
              // branching (diving strategy)
    
              // first branch -> set edges[bestEdge1][bestEdge2]=0
              // record the branching information in a tree list
              treeBB newnode1 = new treeBB();
              newnode1.father = branching;
              newnode1.branchFrom = bestEdge1;
              newnode1.branchTo = bestEdge2;
              newnode1.branchValue = bestVal; // first version was not with bestVal
                                              // but with 0
              newnode1.lowestValue = -1E10;
              newnode1.son0 = null;
    
              // branching on edges[bestEdge1][bestEdge2]=0
              EdgesBasedOnBranching(userParam, newnode1, false);
    
              // the initial lp for the CG contains all the routes of the previous
              // solution less the routes containing this arc
              ArrayList<route> nodeRoutes = new ArrayList<route>();
              for (route r : routes) {
                ArrayList<Integer> path = r.getpath();
                boolean accept = true;
                if (path.size() > 3) { // we must keep trivial routes
                                       // Depot-City-Depot in the set to ensure
                                       // feasibility of the CG
                  prevcity = 0;
                  for (j = 1; accept && (j < path.size()); j++) {
                    city = path.get(j);
                    if ((prevcity == bestEdge1) && (city == bestEdge2))
                      accept = false;
                    prevcity = city;
                  }
                }
                if (accept)
                  nodeRoutes.add(r);
              }
    
              boolean ok;
              ok = BBnode(userParam, nodeRoutes, newnode1, bestRoutes, depth + 1);
              nodeRoutes = null; // free memory
              if (!ok) {
                return false;
              }
    
              branching.son0 = newnode1;
    
              // second branch -> set edges[bestEdge1][bestEdge2]=1
              // record the branching information in a tree list
              treeBB newnode2 = new treeBB();
              newnode2.father = branching;
              newnode2.branchFrom = bestEdge1;
              newnode2.branchTo = bestEdge2;
              newnode2.branchValue = 1 - bestVal; // first version: always 1
              newnode2.lowestValue = -1E10;
              newnode2.son0 = null;
    
              // branching on edges[bestEdge1][bestEdge2]=1
              // second branching=>need to reinitialize the dist matrix
              for (i = 0; i < userParam.nbclients + 2; i++)
                System.arraycopy(userParam.distBase[i], 0, userParam.dist[i], 0,
                    userParam.nbclients + 2);
              EdgesBasedOnBranching(userParam, newnode2, true);
              // the initial lp for the CG contains all the routes of the previous
              // solution less the routes incompatible with this arc
              ArrayList<route> nodeRoutes2 = new ArrayList<route>();
              for (route r : routes) {
                ArrayList<Integer> path = r.getpath();
                boolean accept = true;
                if (path.size() > 3) { // we must keep trivial routes
                                       // Depot-City-Depot in the set to ensure
                                       // feasibility of the CG
                  prevcity = 0;
                  for (i = 1; accept && (i < path.size()); i++) {
                    city = path.get(i);
                    if (userParam.dist[prevcity][city] >= userParam.verybig - 1E-6)
                      accept = false;
                    prevcity = city;
                  }
                }
                if (accept)
                  nodeRoutes2.add(r);
    
              }
              ok = BBnode(userParam, nodeRoutes2, newnode2, bestRoutes, depth + 1);
              nodeRoutes2 = null;
    
              // update lowest feasible value of this node
              branching.lowestValue = (newnode1.lowestValue < newnode2.lowestValue) ? newnode1.lowestValue
                  : newnode2.lowestValue;
    
              return ok;
    
            }
          }
    
        } catch (IOException e) {
          System.err.println("Error: " + e);
        }
        return false;
      }
    
    

    Column Generation的过程如下,Master Problem采用vrptw的set covering model 的松弛模型,利用cplex建模求解,求解的结果作为branch and bound的lower bound:

    public double computeColGen(paramsVRP userParam, ArrayList<route> routes)
          throws IOException {
        int i, j, prevcity, city;
        double cost, obj;
        double[] pi;
        boolean oncemore;
    
        try {
    
          // ---------------------------------------------------------
          // construct the model for the Restricted Master Problem
          // ---------------------------------------------------------
          // warning: for clarity, we create a new cplex env each time we start a
          // Column Generation
          // this class contains (nearly) everything about CG and could be used
          // independently
          // However, since the final goal is to encompass it inside 锟� Branch and
          // Bound (BB),
          // it would (probably) be better to create only once the CPlex env when we
          // initiate the BB and to work with the same (but adjusted) lp matrix each
          // time
          IloCplex cplex = new IloCplex();
    
          IloObjective objfunc = cplex.addMinimize();
    
          // for each vertex/client, one constraint (chapter 3, 3.23 )
          IloRange[] lpmatrix = new IloRange[userParam.nbclients];
          for (i = 0; i < userParam.nbclients; i++)
            lpmatrix[i] = cplex.addRange(1.0, Double.MAX_VALUE); 
          // for each constraint, right member >=1
          // lpmatrix[i] = cplex.addRange(1.0, 1.0); 
          // or for each constraint, right member=1 ... what is the best?
    
          // Declaration of the variables
          IloNumVarArray y = new IloNumVarArray(); // y_p to define whether a path p
                                                   // is used
    
          // Populate the lp matrix and the objective function
          // first with the routes provided by the argument 'routes' of the function
          // (in the context of the Branch and Bound, it would be a pity to start
          // again the CG from scratch at each node of the BB!)
          // (we should reuse parts of the previous solution(s))
          for (route r : routes) {
            int v;
            cost = 0.0;
            prevcity = 0;
            for (i = 1; i < r.getpath().size(); i++) {
              city = r.getpath().get(i);
              cost += userParam.dist[prevcity][city];
              prevcity = city;
            }
    
            r.setcost(cost);
            IloColumn column = cplex.column(objfunc, r.getcost()); 
            // obj coefficient
            for (i = 1; i < r.getpath().size() - 1; i++) {
              v = r.getpath().get(i) - 1;
              column = column.and(cplex.column(lpmatrix[v], 1.0)); 
              // coefficient of y_i in (3.23) => 0 for the other y_p
            }
            y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); 
            // creation of the variable y_i
          }
          // complete the lp with basic route to ensure feasibility
          if (routes.size() < userParam.nbclients) { // a priori true only the first time
            for (i = 0; i < userParam.nbclients; i++) {
              cost = userParam.dist[0][i + 1]
                  + userParam.dist[i + 1][userParam.nbclients + 1];
              IloColumn column = cplex.column(objfunc, cost); // obj coefficient
              column = column.and(cplex.column(lpmatrix[i], 1.0)); // coefficient of
                                                                   // y_i in (3.23)
                                                                   // => 0 for the
                                                                   // other y_p
              y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); // creation of the
                                                                  // variable y_i
              route newroute = new route();
              newroute.addcity(0);
              newroute.addcity(i + 1);
              newroute.addcity(userParam.nbclients + 1);
              newroute.setcost(cost);
              routes.add(newroute);
            }
          }
    
          // cplex.exportModel("model.lp");
    
          // CPlex params
          cplex.setParam(IloCplex.IntParam.RootAlg, IloCplex.Algorithm.Primal);
          cplex.setOut(null);
          // cplex.setParam(IloCplex.DoubleParam.TiLim,30); // max number of
          // seconds: 2h=7200 24h=86400
    
          // ---------------------------------------------------------
          // column generation process
          // ---------------------------------------------------------
          DecimalFormat df = new DecimalFormat("#0000.00");
          oncemore = true;
          double[] prevobj = new double[100];
          int nbroute;
          int previ = -1;
          while (oncemore) {
    
            oncemore = false;
            // ---------------------------------------s------------------
            // solve the current RMP
            // ---------------------------------------------------------
            if (!cplex.solve()) {
              System.out.println("CG: relaxation infeasible!");
              return 1E10;
            }
            prevobj[(++previ) % 100] = cplex.getObjValue();
            // store the 30 last obj values to check stability afterwards
    
            // System.out.println(cplex.getStatus());
            // cplex.exportModel("model.lp");
    
            // ---------------------------------------------------------
            // solve the subproblem to find new columns (if any)
            // ---------------------------------------------------------
            // first define the new costs for the subproblem objective function
            // (SPPRC)
            pi = cplex.getDuals(lpmatrix);
            for (i = 1; i < userParam.nbclients + 1; i++)
              for (j = 0; j < userParam.nbclients + 2; j++)
                userParam.cost[i][j] = userParam.dist[i][j] - pi[i - 1];
    
            // start dynamic programming
            SPPRC sp = new SPPRC();
            ArrayList<route> routesSPPRC = new ArrayList<route>();
    
            nbroute = userParam.nbclients; // arbitrarily limit to the 5 first
                                           // shortest paths with negative cost
            // if ((previ>100) &&
            // (prevobj[(previ-3)%100]-prevobj[previ%100]<0.0003*Math.abs((prevobj[(previ-99)%100]-prevobj[previ%100]))))
            // {
            // System.out.print("/");
            // complete=true; // it the convergence is too slow, start a "complete"
            // shortestpast
            // }
            sp.shortestPath(userParam, routesSPPRC, nbroute);
            sp = null;
    
            // /////////////////////////////
            // parameter here
            if (routesSPPRC.size() > 0) {
              for (route r : routesSPPRC) {
    //             if (userParam.debug) {
    //             System.out.println(" "+r.getcost());
    //             }
                ArrayList<Integer> rout = r.getpath();
                prevcity = rout.get(1);
                cost = userParam.dist[0][prevcity];
                IloColumn column = cplex.column(lpmatrix[rout.get(1) - 1], 1.0);
                for (i = 2; i < rout.size() - 1; i++) {
                  city = rout.get(i);
                  cost += userParam.dist[prevcity][city];
                  prevcity = city;
                  column = column.and(cplex.column(lpmatrix[rout.get(i) - 1], 1.0)); 
                  // coefficient of y_i in (3.23) => 0 for the other y_p
                }
                cost += userParam.dist[prevcity][userParam.nbclients + 1];
                column = column.and(cplex.column(objfunc, cost));
                y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE,
                    "P" + routes.size())); // creation of the variable y_i
                r.setcost(cost);
                routes.add(r);
    
                oncemore = true;
              }
              System.out.print("
    CG Iter " + previ + " Current cost: "
                      + df.format(prevobj[previ % 100]) + " " + routes.size()
                      + " routes");
                System.out.flush();
            }
            //if (previ % 50 == 0)
            routesSPPRC = null;
          }
    
          System.out.println();
    
          for (i = 0; i < y.getSize(); i++)
            routes.get(i).setQ(cplex.getValue(y.getElement(i)));
          obj = cplex.getObjValue(); // mmmmhhh: to check. To be entirely safe, we
                                     // should recompute the obj using the distBase
                                     // matrix instead of the dist matrix
    
          cplex.end();
          return obj;
        } catch (IloException e) {
          System.err.println("Concert exception caught '" + e + "' caught");
        }
        return 1E10;
      }
    
    

    ESPPRC的算法如下,采用label setting算法,感觉速度还可以,具体原理参照往期推文:

      public void shortestPath(paramsVRP userParamArg, ArrayList<route> routes,int nbroute) {
        label current;
        int i,j,idx,nbsol,maxsol;
        double d,d2;
        int[]  checkDom;
        float tt,tt2;
        Integer currentidx;
    
        this.userParam=userParamArg;
        // unprocessed labels list => ordered TreeSet List (?optimal:  need to be sorted like this?)
        TreeSet<Integer> U = new TreeSet<Integer>(new MyLabelComparator());   // unprocessed labels list
    
        // processed labels list => ordered TreeSet List 
        TreeSet<Integer> P = new TreeSet<Integer>(new MyLabelComparator());   // unprocessed labels list
    
        // array of labels
        labels = new ArrayList<label>(2*userParam.nbclients); // initial size at least larger than nb clients
        boolean[] cust= new boolean[userParam.nbclients+2];
        cust[0]=true;
        for (i=1;i<userParam.nbclients+2;i++)
          cust[i]=false;
        labels.add(new label(0,-1,0.0,0,0,false,cust));  // first label: start from depot (client 0)
        U.add(0);
    
        // for each city, an array with the index of the corresponding labels (for dominance)
        checkDom = new int[userParam.nbclients+2];
        ArrayList<Integer>[] city2labels = new ArrayList[userParam.nbclients+2];
        for (i=0;i<userParam.nbclients+2;i++) {
          city2labels[i]=new ArrayList<Integer>();
          checkDom[i]=0;  // index of the first label in city2labels that needs to be checked for dominance (last labels added)
        }
        city2labels[0].add(0);
    
        nbsol = 0;
        maxsol = 2 * nbroute;
        while ((U.size()>0) && (nbsol<maxsol)) {  
          // second term if we want to limit to the first solutions encountered to speed up the SPPRC (perhaps not the BP)
          // remark: we'll keep only nbroute, but we compute 2xnbroute!  It makes a huge difference=>we'll keep the most negative ones
          // this is something to analyze further!  how many solutions to keep and which ones?
          // process one label => get the index AND remove it from U
          currentidx = U.pollFirst();
          current = labels.get(currentidx);
    
          // check for dominance
          // code not fully optimized: 
          int l1,l2;
          boolean pathdom;
          label la1,la2;
          ArrayList<Integer> cleaning = new ArrayList<Integer>();
          for (i = checkDom[current.city]; i < city2labels[current.city].size(); i++) {  // check for dominance between the labels added since the last time we came here with this city and all the other ones
            for (j = 0; j < i; j++) {
              l1 = city2labels[current.city].get(i);
              l2 = city2labels[current.city].get(j);
              la1 = labels.get(l1);
              la2 = labels.get(l2);
              if (!(la1.dominated || la2.dominated)) {  // could happen since we clean 'city2labels' thanks to 'cleaning' only after the double loop
                pathdom = true;
                for (int k = 1; pathdom && (k < userParam.nbclients+2); k++) 
                  pathdom=(!la1.vertexVisited[k] || la2.vertexVisited[k]);
                if (pathdom && (la1.cost<=la2.cost) && (la1.ttime<=la2.ttime) && (la1.demand<=la2.demand)) {
                  labels.get(l2).dominated = true;
                  U.remove((Integer) l2);
                  cleaning.add(l2);
                  pathdom = false;
                  //System.out.print(" ###Remove"+l2);
                } 
                pathdom = true;
                for (int k = 1; pathdom && (k < userParam.nbclients + 2); k++) 
                  pathdom = (!la2.vertexVisited[k] || la1.vertexVisited[k]);
    
                if (pathdom && (la2.cost<=la1.cost) && (la2.ttime<=la1.ttime) && (la2.demand<=la1.demand)) {
                  labels.get(l1).dominated = true;
                  U.remove(l1);
                  cleaning.add(l1);
                  //System.out.print(" ###Remove"+l1);
                  j = city2labels[current.city].size();
                }
              }
            }
          }
    
          for (Integer c : cleaning) 
            city2labels[current.city].remove((Integer) c);   // a little bit confusing but ok since c is an Integer and not an int!
    
          cleaning = null;
          checkDom[current.city] = city2labels[current.city].size();  // update checkDom: all labels currently in city2labels were checked for dom.
    
          // expand REF
          if (!current.dominated){ 
            //System.out.println("Label "+current.city+" "+current.indexPrevLabel+" "+current.cost+" "+current.ttime+" "+current.dominated);
            if (current.city == userParam.nbclients + 1) { // shortest path candidate to the depot!
              if (current.cost<-1e-7)  {        // SP candidate for the column generation
                P.add(currentidx);
                nbsol=0;
                for (Integer labi : P) {
                  label s = labels.get(labi);
                  if (!s.dominated)
                    nbsol++;
                }
              }
            } else {  // if not the depot, we can consider extensions of the path
              for (i = 0; i < userParam.nbclients + 2; i++) {
                if ((!current.vertexVisited[i]) && (userParam.dist[current.city][i] < userParam.verybig-1e-6)) {  // don't go back to a vertex already visited or along a forbidden edge
                  // ttime
                  tt = (float) (current.ttime + userParam.ttime[current.city][i] + userParam.s[current.city]);
                  if (tt < userParam.a[i])
                    tt = userParam.a[i];
                  // demand
                  d = current.demand + userParam.d[i];
                  //System.out.println("  -- "+i+" d:"+d+" t:"+tt);
    
                  // is feasible?
                  if ((tt <= userParam.b[i]) && (d <= userParam.capacity)) {
                    idx = labels.size();
                    boolean[] newcust = new boolean[userParam.nbclients + 2];
                    System.arraycopy(current.vertexVisited, 0, newcust, 0, userParam.nbclients + 2);
                    newcust[i] = true;
                    //speedup: third technique - Feillet 2004 as mentioned in Laporte's paper
                    for (j=1;j<=userParam.nbclients;j++)
                      if (!newcust[j]) {
                        tt2=(float) (tt+userParam.ttime[i][j]+userParam.s[i]);
                        d2=d+userParam.d[j];
                        if ((tt2>userParam.b[j]) || (d2>userParam.capacity))
                          newcust[j]=true;  // useless to visit this client
                      }
    
                    labels.add(new label(i, currentidx, current.cost+userParam.cost[current.city][i], tt, d, false, newcust));  // first label: start from depot (client 0)
                    if (!U.add((Integer) idx)) {  
                      // only happens if there exists already a label at this vertex with the same cost, time and demand and visiting the same cities before
                      // It can happen with some paths where the order of the cities is permuted
                      labels.get(idx).dominated = true; // => we can forget this label and keep only the other one
                    } else 
                      city2labels[i].add(idx);
    
                  }
                }
              }
            }
          }
        }
        // clean
        checkDom = null;
    
        // filtering: find the path from depot to the destination
        Integer lab;
        i = 0;
        while ((i < nbroute) && ((lab = P.pollFirst()) != null)) {
          label s = labels.get(lab);
          if (!s.dominated) {
            if (/*(i < nbroute / 2) ||*/ (s.cost < -1e-4)) {
              // System.out.println(s.cost);
    //          if(s.cost > 0) {
    //            System.out.println("warning >>>>>>>>>>>>>>>>>>>>");
    //          }
              route newroute = new route();
              newroute.setcost(s.cost);
              newroute.addcity(s.city);
              int path = s.indexPrevLabel;
              while (path >= 0) {
                newroute.addcity(labels.get(path).city);
                path = labels.get(path).indexPrevLabel;
              }
              newroute.switchpath();
              routes.add(newroute);
              i++;
            }
          }
    
        }
      }
    
    

    没想到吧,一个算法就包含了这么多知识点,没点基础真的是搞不定的哦~

    大家好好加油吧哈哈。

    【如对代码有疑问,可联系小编,可以提供有偿辅导服务】

  • 相关阅读:
    HTML5之标签
    Linux常用命令(二十四)
    Linux常用命令(二十三)
    Python 定位excel表格的最后一个单元格的位置
    tornado学习
    Linux一些基础命令
    用python打造自己的SDK--使用setuptools打包安装
    Centos开放指定端口命令
    python sqlalchemy基本使用
    python rpc
  • 原文地址:https://www.cnblogs.com/dengfaheng/p/12175958.html
Copyright © 2020-2023  润新知