• CTR模型剖析--《Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction》为例


    CTR预估是当今推荐策略中的重要任务,结合NLP可以发挥更大的作用,接下来我们一起来学习整个流程,以2019年的paper为例开始吧。

    大家可以先刷一遍paper,胸中有大概;随后,github上DeepCTR模块,有大佬写的fgcnn.py可以沿其主线走。Let's go!

    1. 数据:criteo数据集

    简介:点击率预估比赛数据,训练集4千万行,特征连续型有13个,类别型有26个;原始特征包括稠密(性别,年龄等13属性)连续特征、稀疏离散特征(26类别信息)。

    2. 模型:FGCNN

    step 01: 数据处理,抽取训练feature及label,对缺失数据做填充。连续、稠密特征填充0;离散、稀疏特征填充-1(为何?请懂的大神指教)

    step 02:

    对稀疏特征做类别编码,映射到特定的类别上,这里使用包:from sklearn.preprocessing import LabelEncoder

    例:

    对稠密特征做归一化,使用包:from sklearn.preprocessing import MinMaxScaler

     针对panda数据,直接索引操作特定列,非常方便了。以上均为常规操作,不过这些技巧还是很值得学习的。

    step 03:

    稀疏特征要做embedding,统计每列词汇表并进行维度确定,而对于稠密特征也进行类别化封装(个人感觉有些复杂化了)

    依据paper中所述,raw特征特征要过DNN生成复杂特征,分别给dnn部分和linear部分

     划分训练集及测试集,封装成列特征

     step 04: 定义model,训练、预测及评估

    待续... 

    时刻记着自己要成为什么样的人!
  • 相关阅读:
    软件工程概论-用户登录界面
    2016.11.25异常处理
    2016.11.18多态
    2016.11.11继承与接口
    11.6数组
    10.28字符串加密等
    python 读写文件
    python可变的类型、不可变的类型
    python 字典练习 记录学生是否交作业的小程序
    python字典
  • 原文地址:https://www.cnblogs.com/demo-deng/p/14594600.html
Copyright © 2020-2023  润新知