生成字符向量的过程中需要注意:
1)在收集数据生成corpus时候,通过Word2Vec生成字向量的时候,产生了“ ”空格字符向量,但是加载模型是不会成功的。那么你不是生成的binary文件,就可以修改此文件,更改或删除。
示例参考代码如下:
import os import gensim from gensim.models import word2vec from sklearn.decomposition import PCA import numpy as np import logging logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO) class TrainVector: def __init__(self): cur = '/'.join(os.path.abspath(__file__).split('/')[:-1]) # 训练语料所在目录 self.token_filepath = os.path.join(cur, 'train_data/token_train.txt') self.pinyin_filepath = os.path.join(cur, 'train_data/pinyin_train.txt') self.postag_filepath = os.path.join(cur, 'train_data/postag_train.txt') self.dep_filepath = os.path.join(cur, 'train_data/dep_train.txt') self.word_filepath = os.path.join(cur, 'train_data/word_train.txt') # 向量文件所在目录 self.token_embedding = os.path.join(cur, 'model/token_vec_300.bin') self.postag_embedding = os.path.join(cur, 'model/postag_vec_30.bin') self.dep_embedding = os.path.join(cur, 'model/dep_vec_10.bin') self.pinyin_embedding = os.path.join(cur, 'model/pinyin_vec_300.bin') self.word_embedding = os.path.join(cur, 'model/word_vec_300.bin') #向量大小设置 self.token_size = 300 self.pinyin_size = 300 self.dep_size = 10 self.postag_size = 30 self.word_size = 300 '''基于gensimx训练字符向量,拼音向量,词性向量''' def train_vector(self, train_path, embedding_path, embedding_size): sentences = word2vec.Text8Corpus(train_path) # 加载分词语料 model = word2vec.Word2Vec(sentences, size=embedding_size, window=5, min_count=5) # 训练skip-gram模型,默认window=5 model.wv.save_word2vec_format(embedding_path, binary=False) '''基于特征共现+pca降维的依存向训练''' def train_dep_vector(self, train_path, embedding_path, embedding_size): f_embedding = open(embedding_path, 'w+') deps = ['SBV', 'COO', 'ATT', 'VOB', 'FOB', 'IOB', 'POB', 'RAD', 'ADV', 'DBL', 'CMP', 'WP', 'HED', 'LAD'] weight_matrix = [] for dep in deps: print(dep) weights = [] for line in open(train_path): line = line.strip().split(' ') dep_dict = {i.split('@')[0]:int(i.split('@')[1]) for i in line[1].split(';')} sum_tf = sum(dep_dict.values()) dep_dict = {key:round(value/sum_tf,10) for key, value in dep_dict.items()} weight = dep_dict.get(dep, 0.0) weights.append(str(weight)) weight_matrix.append(weights) weight_matrix = np.array(weight_matrix) pca = PCA(n_components = embedding_size) low_embedding = pca.fit_transform(weight_matrix) for index, vecs in enumerate(low_embedding): dep = deps[index] vec = ' '.join([str(vec) for vec in vecs]) f_embedding.write(dep + ' ' + vec + ' ') f_embedding.close() '''训练主函数''' def train_main(self): #训练依存向量 self.train_dep_vector(self.dep_filepath, self.dep_embedding, self.dep_size) #训练汉字字向量 self.train_vector(self.token_filepath, self.token_embedding, self.token_size) #训练汉语词性向量 self.train_vector(self.postag_filepath, self.postag_embedding, self.postag_size) #训练汉语词向量 self.train_vector(self.word_filepath, self.word_embedding, self.word_size) # 训练汉语拼音向量 self.train_vector(self.pinyin_filepath, self.pinyin_embedding, self.pinyin_size) return if __name__ == '__main__': handler = TrainVector() handler.train_main()