• 【消息队列MQ】各类MQ比较


    目前业界有很多MQ产品,我们作如下对比:

    RabbitMQ

    是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。

    Redis

    是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

    入队

    出队

    128B

    512B

    1K

    10K

    128B

    512B

    1K

    10K

    Redis

    16088

    15961

    17094

    25

    15955

    20449

    18098

    9355

    RabbitMQ

    10627

    9916

    9370

    2366

    3219

    3174

    2982

    1588

    ZeroMQ

    号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

    ActiveMQ

    是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。

    Jafka/Kafka

    Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

    其他一些队列列表HornetQ、Apache Qpid、Sparrow、Starling、Kestrel、Beanstalkd、Amazon SQS就不再一一分析。

  • 相关阅读:
    AngularJS笔记---数据绑定
    Javascript笔记--函数
    C#笔记---动态类(Dynamic)应用
    Javascript笔记--Objects
    Javascript笔记----实现Page页面右下角置顶按钮.
    C#基础---扩展方法的应用
    .Net程序员之Python基础教程学习----函数和异常处理[Fifth Day]
    1.3 函数式接口
    1.2 lambda 表达式的语法
    1.1 为什么要使用lambda 表达式
  • 原文地址:https://www.cnblogs.com/dayhand/p/4010758.html
Copyright © 2020-2023  润新知