• hdu-1742Ellipse(自适应辛普森)


    Ellipse

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2418    Accepted Submission(s): 1076

    Problem Description

    Math is important!! Many students failed in 2+2’s mathematical test, so let's AC this problem to mourn for our lost youth..

    Look this sample picture:

    A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PI*a*b )
    Input

    Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equation , A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).


    Output


    For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.

    Sample Input

    2
    2 1 -2 2

    2 1 0 2


    Sample Output

    6.283
    3.142

    #include<map>
    #include<queue>
    #include<math.h>
    #include<vector>
    #include<string>
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    #define inf 0x3f3f3f
    #define ll long long
    #define maxn 100005
    using namespace std;
    double a1,b1;
    double F(double x)      //这里自定义函数
    {
        return b1 * sqrt(1.0 - (x * x) / (a1 * a1));
    }
    double simpson(double a,double b)   //返回区间[a,b]的三点辛普森值
    {
        double c = a + (b - a) / 2.0;
        return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6.0;
    }
    double asr(double a,double b,double eps,double A)   //自适应辛普森递归过程
    {
        double c = a + (b - a) / 2.0;                   //A为区间[a,b]的三点辛普森值
        double L = simpson(a,c), R = simpson(c,b);
        if(fabs(L + R - A) <= 15 * eps) return L + R + (L + R - A) / 15.0;
        return asr(a,c,eps/2.0,L) + asr(c,b,eps/2.0,R);
    }
    double asr(double a,double b,double eps)    //自适应辛普森主过程
    {
        return asr(a,b,eps,simpson(a,b));
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            double l,r;
            double eps=1e-5;
            cin>>a1>>b1>>l>>r;
            double ans=asr(l,r,eps);
            ans*=2.0;
            printf("%.3lf
    ",ans);
        }
    }


     




     





     

  • 相关阅读:

    快排
    排序算法
    运算符
    二叉树
    递归
    队列
    栈(没写完)
    绘制双坐标轴的图形3-不同的plot类型
    绘制双坐标轴的图形2-不同的plot类型
  • 原文地址:https://www.cnblogs.com/da-mei/p/9053285.html
Copyright © 2020-2023  润新知