• codeforces-913C Party Lemonade


    C. Party Lemonade
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    A New Year party is not a New Year party without lemonade! As usual, you are expecting a lot of guests, and buying lemonade has already become a pleasant necessity.


    Your favorite store sells lemonade in bottles of n different volumes at different costs. A single bottle of type i has volume 2i - 1 liters and costs ci roubles. The number of bottles of each type in the store can be considered infinite.


    You want to buy at least L liters of lemonade. How many roubles do you have to spend?


    Input
    The first line contains two integers n and L (1 ≤ n ≤ 30; 1 ≤ L ≤ 109) — the number of types of bottles in the store and the required amount of lemonade in liters, respectively.


    The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 109) — the costs of bottles of different types.


    Output
    Output a single integer — the smallest number of roubles you have to pay in order to buy at least L liters of lemonade.


    Examples
    input
    4 12
    20 30 70 90
    output
    150
    input
    4 3
    10000 1000 100 10
    output
    10
    input
    4 3
    10 100 1000 10000
    output
    30
    input
    5 787787787
    123456789 234567890 345678901 456789012 987654321
    output
    44981600785557577
    Note
    In the first example you should buy one 8-liter bottle for 90 roubles and two 2-liter bottles for 30 roubles each. In total you'll get 12 liters of lemonade for just 150 roubles.

    In the second example, even though you need only 3 liters, it's cheaper to buy a single 8-liter bottle for 10 roubles.

    In the third example it's best to buy three 1-liter bottles for 10 roubles each, getting three liters for 30 roubles.

    题意:第 i 种柠檬水可以装 2 的 i-1 次方升柠檬水花费 ci 卢布。商店里每种类型的瓶子数量都可以被认为是无限的。 你想买至少l升柠檬水。你最少要花多少卢布?

    思路:比赛时没做出来,感觉是贪心,可是不会写。。。

    题解:

    Note that if ai ≤ ai + 1, then it doesn't make sense to buy any bottles of type i + 1 — it won't ever be worse to buy two bottles of type i instead. In this case let's assume that we actually have an option to buy a bottle of type i + 1 at the cost of ai and replaceai + 1 with min(ai + 1, 2·ai). Let's do this for all i from 1 to n - 1 in increasing order.

    Now for all i it's true that ai ≥ ai + 1. Note that now it doesn't make sense to buy more than one bottle of type i if i < n. Indeed, in this case it won't ever be worse to buy a bottle of type i + 1 instead of two bottles of type i. From now on, we'll only search for options where we buy at most one bottle of every type except the last one.

    Suppose that we had to buy exactly L liters of lemonade, as opposed to at least L. Note that in this case the last n - 1 bits of Luniquely determine which bottles of types less than n we have to buy. Indeed, if L is odd, then we have to buy a bottle of type 0, otherwise we can't do that. By the same line of thought, it's easy to see that bit j in the binary representation of L is responsible for whether we should buy a bottle of type j. Finally, we have to buy exactly ⌊ L / 2n - 1 bottles of type n.

    But what to do with the fact that we're allowed to buy more than L liters? Suppose we buy M > L liters. Consider the highest bit j in which M and L differ. Since M > L, the j-th bit in M is 1, and the j-th bit in L is 0. But then all bits lower than the j-th in M are 0 in the optimal answer, since these bits are responsible for the "extra" bottles — those for which we spend money for some reason, but without which we would still have M > L.

    Thus, here is the overall solution. Loop over the highest bit j in which M differs from L. Form the value of M, taking bits higher than the j-th from L, setting the j-th bit in M to 1, and bits lower than the j-th to 0. Calculate the amount of money we have to pay to buy exactly M liters of lemonade. Take the minimum over all j.

    The complexity of the solution is O(n) or O(n2), depending on the implementation.


    #include <bits/stdc++.h>
    
    using namespace std;
    
    int main() {
      int n, L;
      scanf("%d %d", &n, &L);
      vector<int> c(n);
      for (int i = 0; i < n; i++) {
        scanf("%d", &c[i]);
      }
      for (int i = 0; i < n - 1; i++) {
        c[i + 1] = min(c[i + 1], 2 * c[i]);
      }
      long long ans = (long long) 4e18;
      long long sum = 0;
      for (int i = n - 1; i >= 0; i--) {
        int need = L / (1 << i);
        sum += (long long) need * c[i];
        L -= need << i;
        ans = min(ans, sum + (L > 0) * c[i]);
      }
      cout << ans << endl;
      return 0;
    }














  • 相关阅读:
    剑指offer55. 平衡二叉树
    剑指offer52. 两个链表的第一个公共节点
    LC1043. Partition Array for Maximum Sum
    剑指offer40. Top K
    剑指offer39. 数组中出现次数超过一半的数字
    剑指offer36.将BST原地转换为双向循环链表
    判断大小端
    CentOS安装RabbitMQ 3.8.9
    Nginx 413 Request Too Large 错误
    NginxPC端和移动端区分
  • 原文地址:https://www.cnblogs.com/da-mei/p/9053266.html
Copyright © 2020-2023  润新知