输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
方法1:后序遍历二叉树,先判断子树是不是平衡树,如果不是,直接返回,此处利用了剪枝的思想
time: $O(n)$
space: $O(n)$
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int dfs(TreeNode* u) { if (!u) return 0; int left = dfs(u->left); if (left == -1) return -1; int right = dfs(u->right); if (right == -1) return -1; return abs(left - right) < 2 ? max(left,right) + 1 : -1; } bool isBalanced(TreeNode* root) { return dfs(root) != -1; } };
方法2:先序遍历二叉树,先判断当前树是不是平衡树,需要一个计算左右子树深度的函数,然后再判断左右子树是否为平衡二叉树,此处有大量重复计算
time: $O(nlog(n))$
space: $O(n)$
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int dep(TreeNode* u) { if (!u) return 0; return 1 + max(dep(u->left), dep(u->right)); } bool isBalanced(TreeNode* root) { if (!root) return true; int ld = dep(root->left); int rd = dep(root->right); if (abs(ld - rd) > 1) return false; return isBalanced(root->left) && isBalanced(root->right); } };