• LightOJ


    Find the result of the following code:


    long long pairsFormLCM( int n ) {
        long long res = 0;
        for( int i = 1; i <= n; i++ )
            for( int j = i; j <= n; j++ )
               if( lcm(i, j) == n ) res++; // lcm means least common multiple
        return res;
    }


    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).


    Input
    Input starts with an integer T (≤ 200), denoting the number of test cases.


    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).


    Output
    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.


    Sample Input
    15
    2
    3
    4
    6
    8
    10
    12
    15
    18
    20
    21
    24
    25
    27
    29
    Sample Output
    Case 1: 2
    Case 2: 2
    Case 3: 3
    Case 4: 5
    Case 5: 4
    Case 6: 5
    Case 7: 8
    Case 8: 5
    Case 9: 8
    Case 10: 8
    Case 11: 5
    Case 12: 11
    Case 13: 3
    Case 14: 4

    Case 15: 2

    求小于等于n的数中最小公倍数等于N的组合而且 i<=j  ;

    #include<stack>
    #include<queue>
    #include<math.h>
    #include<vector>
    #include<string>
    #include<stdio.h>
    #include<map>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    #define maxn 1000005
    #define maxm 10000005
    #define MAXN 100005
    #define MAXM 10005
    #define mem(a,b) memset(a,b,sizeof(a))
    #define ll unsigned long long
    #define inf 0x3f3f3f3f
    using namespace std;
    bool vis[maxm+5];
    ll tot;
    ll p[maxn];
    void get_prime(){
         tot=0;
        mem(vis,true);
        for(ll i=2;i<=maxm;i++){
            if(vis[i]){
                p[tot++]=i;
                for(ll j=i*i;j<=maxm;j+=i)vis[j]=false;
            }
        }
    }
    ll f(ll n){
        if(n==1)return 1;
        ll ans=1;
        for(int i=0;i<tot;i++){
            if(n%p[i]==0){
                ll x=0;
               while(n%p[i]==0){x++;n/=p[i];}
                ans*=(2*x+1);
            }
        }
        if(n!=1)ans*=(2*1+1);
        return ans/2+1;
    }
    int main(){
        get_prime();
        int t,test=0;
        scanf("%d",&t);
        while(t--){
        ll n;
        scanf("%lld",&n);
       printf("Case %d: %lld
    ",++test,f(n));
        }
    }
    

  • 相关阅读:
    WCF 转 武胜
    NET(C#):GetHashCode不需要太复杂 转 武胜
    wcf KnownTypeAttribute 武胜
    memmove
    李开复谈创业失败十原因:经不住诱惑 直接山寨
    Linux使用Wine 安装source insight
    VM 中ubuntu下Eclipse ctrl+s 显示update conflict的问题
    ISO/OSI模型
    memset函数使用详解
    C语言中字符串的处理方式
  • 原文地址:https://www.cnblogs.com/da-mei/p/9053225.html
Copyright © 2020-2023  润新知