• Evanyou Blog 彩带


      题目传送门

    任务查询系统

    题目描述

    最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分。超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行),其优先级为Pi。同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同。调度系统会经常向查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后取前Ki个)的优先级之和是多少。特别的,如果Ki大于第Xi秒正在运行的任务总数,则直接回答第Xi秒正在运行的任务优先级之和。上述所有参数均为整数,时间的范围在1到n之间(包含1和n)。

    输入输出格式

    输入格式:

     

    输入文件第一行包含两个空格分开的正整数m和n,分别表示任务总数和时间范围。接下来m行,每行包含三个空格分开的正整数Si、Ei和Pi(Si<=Ei),描述一个任务。接下来n行,每行包含四个空格分开的整数Xi、Ai、Bi和Ci,描述一次查询。查询的参数Ki需要由公式 Ki=1+(Ai*Pre+Bi) mod Ci计算得到。其中Pre表示上一次查询的结果,对于第一次查询,Pre=1。

     

    输出格式:

     

    输出共n行,每行一个整数,表示查询结果。

     

    输入输出样例

    输入样例#1: 
    4 3
    1 2 6
    2 3 3
    1 3 2
    3 3 4
    3 1 3 2
    1 1 3 4
    2 2 4 3
    输出样例#1: 
    2
    8
    11

    说明

    样例解释

    K1 = (1*1+3)%2+1 = 1

    K2 = (1*2+3)%4+1 = 2

    K3 = (2*8+4)%3+1 = 3

    对于100%的数据,1<=m,n,Si,Ei,Ci<=100000,0<=Ai,Bi<=100000,1<=Pi<=10000000,Xi为1到n的一个排列


      分析:

      练一练主席树。

      转换一下题意:给你一个长度为$n$的数轴,给定你一些区间$[l,r]$,每个区间有一个优先级,再问你包含某一个位置$x$的优先级最小的$k$个区间的优先级之和,强制在线。

      不难想到用主席树来处理。我们可以对区间进行差分,然后用主席树记录每一个时刻被修改的信息,不过因为某一个时刻可能会有多次修改,所以我们修改的时候要另外开一个数组进行辅助,查询就直接查询就行了。

      具体实现看代码吧。

      Code:

    //It is made by HolseLee on 21st Sep 2018
    //Luogu.org P3168
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    
    typedef long long ll;
    const int N=1e5+7;
    int n,m,rk[N<<1],root[N],v[N<<1],c[N<<1],cnte,tot;
    struct Node {
        int pos,type,val;
        Node() {}
        Node(const int _x,const int _y,const int _z): pos(_x),type(_y),val(_z) {}
        bool operator < (const Node x) const {
            return pos<x.pos;
        }
    }e[N<<1];
    struct Seg {
        ll cnt,sum; int ls,rs;
    }seg[N*40];
    
    template<typename re>inline void read(re &x)
    {
        x=0; char ch=getchar(); bool flag=false;
        while( ch<'0' || ch>'9' ) {
            if( ch=='-' ) flag=true; ch=getchar();
        }
        while( ch>='0' && ch<='9' ) {
            x=x*10+ch-'0'; ch=getchar();
        }
        flag ? x=-x : 1;
    }
    
    void update(int &now,int las,int type,int pos,int l,int r)
    {
        now=++tot; seg[now]=seg[las];
        seg[now].sum+=(ll)(type*v[pos]); seg[now].cnt+=type;
        if( l==r ) return;
        int mid=(l+r)>>1;
        if( pos<=mid ) update(seg[now].ls,seg[las].ls,type,pos,l,mid);
        else update(seg[now].rs,seg[las].rs,type,pos,mid+1,r);
    }
    
    int quary(int now,int k,int l,int r)
    {
        if( l==r ) return seg[now].sum/seg[now].cnt*(ll)k;
        int mid=(l+r)>>1, s=seg[seg[now].ls].cnt;
        if( k<=s ) return quary(seg[now].ls,k,l,mid);
        else return seg[seg[now].ls].sum+quary(seg[now].rs,k-s,mid+1,r);
    }
    
    int main()
    {
        read(n),read(m);
        int x,y,z;
        for(int i=1; i<=n; ++i) {
            read(x), read(y), read(z);
            e[++cnte]=Node(x,1,z); e[++cnte]=Node(y+1,-1,z);
            v[i]=z;
        }
        sort(v+1,v+n+1); sort(e+1,e+cnte+1);
        for(int i=1; i<=cnte; ++i) 
            rk[i]=lower_bound(v+1,v+n+1,e[i].val)-v;
        for(int i=1,j=1; i<=m; ++i) {
            while( j<=cnte && e[j].pos==i )
                update(c[j],c[j-1],e[j].type,rk[j],1,m), j++;
            root[i]=c[j-1];
        }
        ll ans=1;int kth,t;
        for(int i=1; i<=m; ++i) {
            read(t), read(x), read(y), read(z);
            kth=1+(x*ans+y)%z;
            if( kth>seg[root[t]].cnt ) printf("%lld
    ", ans=seg[root[t]].sum);
            else printf("%lld
    ", ans=quary(root[t],kth,1,m));
        }
        return 0;
    }
  • 相关阅读:
    *** 82 删除排序链表中的重复元素II
    83 删除排序链表中的重复元素
    61 旋转链表
    ASP.NET MVC3 ModelState.IsValid为false的问题
    ServletContext
    ServletConfig
    Servlet线程安全
    Servlet的一些细节(2)
    Servlet的一些细节(1)
    Servlet的接口实现类
  • 原文地址:https://www.cnblogs.com/cytus/p/9685158.html
Copyright © 2020-2023  润新知