• codeforces 560 C Gerald's Hexagon


    神精度……………………这都能过。随便算就好了,根本不用操心


    就是把六边形补全成三角形。然后去掉补的三个三角形,然后面积除以边长1的三角形的面积就可以。。。。



    #include<map>
    #include<string>
    #include<cstring>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<iostream>
    #include<algorithm>
    #include<bitset>
    #include<climits>
    #include<list>
    #include<iomanip>
    #include<stack>
    #include<set>
    using namespace std;
    const double pi=acos(-1.0);
    double a[6];
    int main()
    {
    	for(int i=0;i<6;i++)
    		cin>>a[i];
    	double side=a[0]+a[1]+a[2],area=pow(side,2)*sin(pi/3)*cos(pi/3);
    	area-=pow(a[0],2)*sin(pi/3)*cos(pi/3)+pow(a[2],2)*sin(pi/3)*cos(pi/3)+pow(a[4],2)*sin(pi/3)*cos(pi/3);
    	double ans=area/(sin(pi/3)*cos(pi/3));
    	printf("%.0f",ans);
    }





    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.

    He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.

    Input

    The first and the single line of the input contains 6 space-separated integers a1, a2, a3, a4, a5 and a6 (1 ≤ ai ≤ 1000) — the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists.

    Output

    Print a single integer — the number of triangles with the sides of one 1 centimeter, into which the hexagon is split.

    Sample test(s)
    input
    1 1 1 1 1 1
    
    output
    6
    
    input
    1 2 1 2 1 2
    
    output
    13
    
    Note

    This is what Gerald's hexagon looks like in the first sample:

    And that's what it looks like in the second sample:



  • 相关阅读:
    次小生成树
    乘法逆元(递推)
    乘法逆元(快速幂)
    带偏移量的并查集
    Tarjan 强连通分量
    Luogu_P2461 [SDOI2008]递归数列 【题解】 矩阵乘法
    Luogu_P2243 电路维修【题解】 双端队列bfs
    Luogu_ P2962 [USACO09NOV] 灯 【题解】 双向搜索
    luogu_P2044【题解】 随机数生成器 矩阵乘法
    luogu_P2054 bzoj 1965 洗牌 【题解】 快速幂 快速乘
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/6714511.html
Copyright © 2020-2023  润新知