• [国家集训队]和与积(莫比乌斯反演)


    Problem

    • 给出 \(n\) ,统计满足以下条件的数对 \((a,b)\) 的个数:
      1.\(1≤a<b≤n\)
      2.\(a+b|ab\)
    • \(n<2^{31}\)

    Solution

    • \(d=gcd(a,b),a=di,b=dj\),那么根据题意有:

    • \[(di+dj)|d^2ij \]

    • 即:

    • \[(i+j)|ijd \]

    • 又因为:

    • \[gcd(i,j)=1 \]

    • 所以:

    • \[ij\%(i+j)!=0 \]

    • 那么:

    • \[(i+j)|d \]

    • 那么问题转化为求满足以下条件的三元组 \((i,j,d)\) 的个数:
      1.\(gcd(i,j)=1\)
      2.\(i<j\)
      3.\(di,dj≤n\)

    • \[ans=\sum_{i=1}^{\sqrt{n}}\sum_{j=1}^{i-1}\lfloor{\frac{\lfloor{\frac{n}{i}}\rfloor}{i+j}}\rfloor [gcd(i,j)=1] \]

    • \[ans=\sum_{i=1}^{\sqrt{n}}\sum_{j=1}^{i-1}\lfloor{\frac{n}{i(i+j)}}\rfloor\sum_{k|gcd(i,j)}μ(k) \]

    • \(i=xk,j=yk\),那么:

    • \[ans=\sum_{k=1}^{\sqrt{n}}μ(k)\sum_{x=1}^{\lfloor{\frac{\sqrt{n}}{k}}\rfloor}\sum_{y=1}^{x-1}\lfloor{\frac{\lfloor{\frac{n}{xk^2}}\rfloor}{x+y}}\rfloor \]

    • 那么枚举 \(x,k\),然后对 \(x+y\) 整除分块即可。

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define ll long long
    
    const int e = 1e6 + 5;
    int n, mul[e];
    bool bo[e];
    ll ans;
    
    inline ll solve(int x, int k)
    {
    	int m = 2 * x, j, t = n / (x * k * k), i;
    	ll res = 0;
    	for (i = x + 1; i < m; i = j + 1)
    	{
    		if (!(t / i)) return res;
    		j = min(m - 1, t / (t / i));
    		if (j - i + 1 >= 0) res += (ll)(j - i + 1) * (t / i);
    	}
    	return res;
    }
    
    int main()
    {
    	cin >> n;
    	int s = sqrt(n), x, k, i, j;
    	for (i = 1; i <= s; i++) mul[i] = 1;
    	for (i = 2; i <= s; i++)
    	if (!bo[i])
    	{
    		mul[i] = -1;
    		for (j = 2 * i; j <= s; j += i)
    		{
    			bo[j] = 1;
    			if (j / i % i == 0) mul[j] = 0;
    			else mul[j] *= -1;
    		}
    	}
    	for (k = 1; k <= s; k++)
    	if (mul[k])
    	for (x = 1; x * k * k <= n && x * k <= s; x++)
    	ans += mul[k] * solve(x, k);
    	cout << ans << endl;
    	return 0;
    }
    
  • 相关阅读:
    Spring事务管理
    Spring Bean装配(下)——注解
    Spring Bean装配(上)
    Spring入门篇
    Spring入门篇——AOP基本概念
    计算机组成原理(1)——系统概述
    浏览器缓存 总结
    React-router 4 总结
    Redux 总结
    操作系统位数 的 概念(转)
  • 原文地址:https://www.cnblogs.com/cyf32768/p/12196176.html
Copyright © 2020-2023  润新知