• SPOJ


    题意:求一个串中出现重复子串次数最多的数目。

    析:枚举每个长度的子串,至少要重复两次,必然会经过s[l*i]中相邻的两个,然后再分别向前和向后匹配即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 50000 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Array{
      int sa[maxn], s[maxn], t[maxn], t2[maxn];
      int r[maxn], h[maxn], c[maxn], dp[maxn][20];
      int n;
    
      void init(){
        n = 0;  memset(sa, 0, sizeof sa);
      }
    
      void build_sa(int m){
        int *x = t, *y = t2;
        for(int i = 0; i < m; ++i)  c[i] = 0;
        for(int i = 0; i < n; ++i)  ++c[x[i] = s[i]];
        for(int i = 1; i < m; ++i)  c[i] += c[i-1];
        for(int i = n-1; i >= 0; --i)  sa[--c[x[i]]] = i;
    
        for(int k = 1; k <= n; k <<= 1){
          int p = 0;
          for(int i = n-k; i < n; ++i)  y[p++] = i;
          for(int i = 0; i < n; ++i)  if(sa[i] >= k)  y[p++] = sa[i] - k;
          for(int i = 0; i < m; ++i)  c[i] = 0;
          for(int i = 0; i < n; ++i)  ++c[x[y[i]]];
          for(int i = 1; i < m; ++i)  c[i] += c[i-1];
          for(int i = n-1; i >= 0; --i)  sa[--c[x[y[i]]]] = y[i];
    
          swap(x, y);
          p = 1;  x[sa[0]] = 0;
          for(int i = 1; i < n; ++i)
            x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+k] == y[sa[i]+k] ? p-1 : p++;
          if(p >= n)  break;
          m = p;
        }
      }
    
      void getHight(){
        int k = 0;
        for(int i = 0; i < n; ++i)  r[sa[i]] = i;
        for(int i = 0; i < n; ++i){
          if(k)  --k;
          int j = sa[r[i]-1];
          while(s[i+k] == s[j+k])  ++k;
          h[r[i]] = k;
        }
      }
    
      void rmq_init(){
        for(int i = 1; i <= n; ++i)  dp[i][0] = h[i];
        for(int j = 1; (1<<j) <= n; ++j)
          for(int i = 1; i + (1<<j) <= n; ++i)
            dp[i][j] = min(dp[i][j-1], dp[i+(1<<j-1)][j-1]);
      }
    
      int query(int L, int R){
        L = r[L];  R = r[R];
        if(L > R)  swap(L, R);
        ++L;
        int k = log(R-L+1) / log(2.0);
        return min(dp[L][k], dp[R-(1<<k)+1][k]);
      }
    };
    Array arr;
    char s[5];
    
    int main(){
      int T;  cin >> T;
      while(T--){
        scanf("%d", &n);
        arr.init();
        for(int i = 0; i < n; ++i){
          scanf("%s", s);
          arr.s[arr.n++] = s[0] - 'a' + 1;
        }
        arr.s[arr.n++] =  0;
        arr.build_sa(5);
        arr.getHight();
        arr.rmq_init();
        int ans = 0;
        for(int i = 1; i <= n; ++i)
          for(int j = 0; j + i <= n; j += i){
            int k = arr.query(j, j + i);
            int res = k / i + 1;
            int t = j - (i - k % i);
            if(t >= 0 && arr.query(t, t + i) >= k) ++res;
            ans = max(ans, res);
          }
        printf("%d
    ", ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    IO操作之BIO、NIO、AIO
    IO之Socket网络编程
    this.getClass()和super.getClass()得到的是同一个类
    经济增长的背后
    SVN分支创建与合并
    .net类库里ListView的一个BUG
    VS2010调试技巧
    用C#代码编写的SN快速输入工具
    请教如何改善C#中socket通信机客户端程序的健壮性
    利用WebClient实现对Http协议的Post和Get对网站进行模拟登陆和浏览
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6736417.html
Copyright © 2020-2023  润新知