• Poj 3713 Transferring Sylla 3-连通


    Transferring Sylla
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 1320   Accepted: 322

    Description

    After recapturing Sylla, the Company plans to establish a new secure system, a transferring net! The new system is designed as follows:

    The Company staff choose N cities around the nation which are connected by "security tunnels" directly or indirectly. Once a week, Sylla is to be transferred to another city through the tunnels. As General ordered, the transferring net must reach a certain security level that there are at least 3 independent paths between any pair of cities ab. When General says the paths are independent, he means that the paths share only a and b in common.

    Given a design of a transferring net, your work is to inspect whether it reaches such security level.

    Input

    The input consists of several test cases.
    For each test case, the first line contains two integers, N ≤ 500 and M ≤ 20000. indicating the number of cities and tunnels.
    The following M lines each contains two integers a and b (0 ≤ a, b < N), indicating the city a and city b are connected directly by a tunnel.

    The input ends by two zeroes.

    Output

    For each test case output "YES" if it reaches such security level, "NO" otherwise.

    Sample Input

    4 6
    0 1
    0 2
    0 3
    1 2
    1 3
    2 3
    
    4 5
    0 1
    0 2
    0 3
    1 2
    1 3
    
    7 6
    0 1
    0 2
    0 3
    1 2
    1 3
    2 3
    
    0 0

    Sample Output

    YES
    NO
    NO
    ------------

    无向图的K连通似乎可以用网络流做,但是不会T^T

    枚举删除图中的每个顶点,求图的割点

    若有割点-->不是双连通-->加上删除的点不是三连通--->结果为NO

    没有割点-->是双连通-->加上删除的点是三连通-->结果为YES

    ------------

    /** head-file **/
    
    #include <iostream>
    #include <fstream>
    #include <sstream>
    #include <iomanip>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <string>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <list>
    #include <set>
    #include <map>
    #include <algorithm>
    
    /** define-for **/
    
    #define REP(i, n) for (int i=0;i<int(n);++i)
    #define FOR(i, a, b) for (int i=int(a);i<int(b);++i)
    #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)
    #define REP_1(i, n) for (int i=1;i<=int(n);++i)
    #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)
    #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)
    #define REP_N(i, n) for (i=0;i<int(n);++i)
    #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)
    #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)
    #define REP_1_N(i, n) for (i=1;i<=int(n);++i)
    #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)
    #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)
    
    /** define-useful **/
    
    #define clr(x,a) memset(x,a,sizeof(x))
    #define sz(x) int(x.size())
    #define see(x) cerr<<#x<<" "<<x<<endl
    #define se(x) cerr<<" "<<x
    #define pb push_back
    #define mp make_pair
    
    /** test **/
    
    #define Display(A, n, m) {                      
        REP(i, n){                                  
            REP(j, m) cout << A[i][j] << " ";       
            cout << endl;                           
        }                                           
    }
    
    #define Display_1(A, n, m) {                    
        REP_1(i, n){                                
            REP_1(j, m) cout << A[i][j] << " ";     
            cout << endl;                           
        }                                           
    }
    
    using namespace std;
    
    /** typedef **/
    
    typedef long long LL;
    
    /** Add - On **/
    
    const int direct4[4][2]={ {0,1},{1,0},{0,-1},{-1,0} };
    const int direct8[8][2]={ {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
    const int direct3[6][3]={ {1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1} };
    
    const int MOD = 1000000007;
    const int INF = 0x3f3f3f3f;
    const long long INFF = 1LL << 60;
    const double EPS = 1e-9;
    const double OO = 1e15;
    const double PI = acos(-1.0); //M_PI;
    const int maxn=1111;
    const int maxm=111111;
    
    bool dead[maxn];
    int cutnum;
    struct EdgeNode_1{
        int to;
        int w;
        int next;
        bool cut;
    };
    struct Bcc_Graph{
        int head[maxn];
        EdgeNode_1 edges[maxm];
        int edge,n;
        void init(int n){
            memset(head,-1,sizeof(head));
            this->n=n;
            edge=0;
        }
        void addedge(int u,int v,int c=0){
            edges[edge].cut=0,edges[edge].w=c,edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++;
        }
        //点双连通/割点/桥
        int dfn[maxn],low[maxn],dfs_clock;
        bool iscut[maxn];
        int dfs(int u,int fa){
            int lowu=dfn[u]=++dfs_clock;
            int child=0;
            for (int i=head[u];i!=-1;i=edges[i].next){
                int v=edges[i].to;
                if (v==fa) continue;
                if (dead[v]) continue;
                if (!dfn[v]){
                    child++;
                    int lowv=dfs(v,u);
                    lowu=min(lowu,lowv);
                    if (dfn[u]<=lowv){
                        if (!iscut[u]) cutnum++;
                        iscut[u]=true;//割点
                        //cerr<<"u is cut "<<u<<" num="<<cutnum<<endl;
                    }
                }
                else if (dfn[v]<dfn[u]){
                    lowu=min(lowu,dfn[v]);
                }
            }
            if (fa<0&&child==1){
                if (iscut[u]) cutnum--;
                //cerr<<"u is not cut "<<u<<" num="<<cutnum<<endl;
                iscut[u]=0;//割点
            }
            low[u]=lowu;
            return lowu;
        }
        void find_bcc(){
            memset(dfn,0,sizeof(dfn));
            memset(iscut,0,sizeof(iscut));
            dfs_clock=0;
            bool ok=false;
            for (int i=1;i<=n;i++){
                if (!dfn[i]&&!dead[i]){
                    if (ok) {
                        cutnum++;
                        break;
                    }
                    dfs(i,-1);
                    if (cutnum>0) break;
                    ok=true;
                }
            }
        }
    }solver;
    
    int n,m;
    int main()
    {
        while (~scanf("%d%d",&n,&m)){
            if (n==0&&m==0) break;
            solver.init(n);
            REP(i,m){
                int x,y;
                scanf("%d%d",&x,&y);
                x++;
                y++;
                solver.addedge(x,y);
                solver.addedge(y,x);
            }
            memset(dead,0,sizeof(dead));
            bool ans=true;
            REP_1(i,n){
                dead[i]=true;
                cutnum=0;
                solver.find_bcc();
                //cerr<<i<<" cut="<<cutnum<<endl;
                if (cutnum>0){
                    ans=false;
                    break;
                }
                dead[i]=false;
            }
            if (ans) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    




  • 相关阅读:
    如何创建支持64位的安装程序
    SharePoint Server 2013开发之旅(四):配置工作流开发和测试环境
    SharePoint Server 2013开发之旅(三):为SharePoint Server配置App开发、部署、管理环境
    SharePoint Server 2013开发之旅(二):使用在线的开发人员网站进行SharePoint App开发
    SharePoint Server 2013开发之旅(一):新的开发平台和典型开发场景介绍
    在WPF应用程序中利用IEditableObject接口实现可撤销编辑的对象
    一个在ASP.NET中利用服务器控件GridView实现数据增删改查的例子
    关于未捕获异常的处理(WPF)
    牛刀小试:使用Reactive Extensions(Rx),对短时间内多次发生的事件限流
    如何对SharePoint网站进行预热(warmup)以提高响应速度
  • 原文地址:https://www.cnblogs.com/cyendra/p/3681587.html
Copyright © 2020-2023  润新知