• 机器学习 实验三 朴素贝叶斯算法及应用


    机器学习实验-计算机18级 https://edu.cnblogs.com/campus/ahgc/machinelearning
    作业要求 https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085
    学 号 3180701236

    一、实验目的
    1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;

    2.掌握常见的高斯模型,多项式模型和伯努利模型;

    3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;

    4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题

    二、实验内容
    1.实现高斯朴素贝叶斯算法。

    2.熟悉sklearn库中的朴素贝叶斯算法;

    3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。

    4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

    三、实验步骤

    ** 高斯朴素贝叶斯算法实现**

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    
    # data
    def create_data():
     iris = load_iris()
     df = pd.DataFrame(iris.data, columns=iris.feature_names)
     df['label'] = iris.target
     df.columns = [
        'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
     ]
     data = np.array(df.iloc[:100, :])
     # print(data)
     return data[:, :-1], data[:, -1]
    
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    
    X_test[0], y_test[0]
    

    class NaiveBayes:
     def __init__(self):
        self.model = None
     # 数学期望
     @staticmethod
     def mean(X):
        return sum(X) / float(len(X))
     # 标准差(方差)
     def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
     # 概率密度函数
     def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
     # 处理X_train
     def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries
     # 分类别求出数学期望和标准差
     def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'
     # 计算概率
     def calculate_probabilities(self, input_data):
     # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
     # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities
     # 类别
     def predict(self, X_test):
     # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label
     def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))
    
    
    model = NaiveBayes()
    
    model.fit(X_train, y_train)
    

    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    

    结果:
    0.0

    model.score(X_test, y_test)
    

    结果:
    1.0

    四、个人小结

    1 应用场景
    该模型常用于性别分类,即通过一些测量的特征,包括身高、体重、脚的尺寸,判定一个人是男性还是女性。

    2 算法优缺点
    优点:
    算法逻辑简单,易于实现。
    分类过程中时空开销小

    缺点:
    理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。

  • 相关阅读:
    JDK安装,环境配置
    XSS攻击测试代码
    css3 input边框蓝光特效
    PDFobject插件使用,PDF在线查看插件
    网页中嵌入可以点击“运行代码”执行html/css/js代码
    SmohanTimeLine.js 酷炫的时间轴效果
    java进行文件上传,带进度条
    javascript读取xml文件
    C# 动态类型与动态编译简介
    Mac 命令行美化
  • 原文地址:https://www.cnblogs.com/cydestiny/p/14915670.html
Copyright © 2020-2023  润新知