• A Simple Problem with Integers 线段树 成段更新


    Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u

    Description

    You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C abc" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q ab" means querying the sum of AaAa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15

    Hint

    The sums may exceed the range of 32-bit integers.
      1 #include <math.h>
      2 #include <stdio.h>
      3 #include <string.h>
      4 #include <algorithm>
      5 using namespace std;
      6 
      7 int a[100005],sum[450005],lazy[450005],ql,qr,c;
      8 
      9 void down(int o,int l,int r)
     10 {
     11     if(lazy[o]!=0)
     12     {
     13         int mid=(l+r)/2;
     14         lazy[o*2]=lazy[o*2]+lazy[o];
     15         lazy[o*2+1]=lazy[o*2+1]+lazy[o];
     16         sum[o*2]=sum[o*2]+lazy[o]*(mid-l+1);
     17         sum[o*2+1]=sum[o*2+1]+lazy[o]*(r-mid);
     18         lazy[o]=0;
     19     }
     20 }
     21 
     22 void up(int o)
     23 {
     24     sum[o]=sum[o*2]+sum[o*2+1];
     25 }
     26 
     27 void build(int o,int l,int r)
     28 {
     29     if(l==r)
     30     {
     31         sum[o]=a[l];
     32         return;
     33     }
     34     int mid=(l+r)/2;
     35     build(o*2,l,mid);
     36     build(o*2+1,mid+1,r);
     37     up(o);
     38 }
     39 
     40 void update(int o,int l,int r)
     41 {
     42     if(ql<=l && qr>=r)
     43     {
     44         lazy[o]=lazy[o]+c;
     45         sum[o]=sum[o]+c*(r-l+1);
     46         return;
     47     }
     48     down(o,l,r);
     49     int mid=(l+r)/2;
     50     if(ql<=mid)
     51         update(o*2,l,mid);
     52     if(qr>mid)
     53         update(o*2+1,mid+1,r);
     54     up(o);
     55 }
     56 
     57 int query(int o,int l,int r)
     58 {
     59     if(ql<=l && qr>=r)
     60     {
     61         return sum[o];
     62     }
     63     down(o,l,r);
     64     int mid=(l+r)/2,ans=0;
     65     if(ql<=mid)
     66         ans=ans+query(o*2,l,mid);
     67     if(qr>mid)
     68         ans=ans+query(o*2+1,mid+1,r);
     69     up(o);
     70     return ans;
     71 }
     72 
     73 int main()
     74 {
     75     int n,q,i;
     76     char sre[10];
     77     while(scanf("%d %d",&n,&q)!=EOF)
     78     {
     79         memset(sum,0,sizeof(sum));
     80         memset(lazy,0,sizeof(lazy));
     81         for(i=1;i<=n;i++)
     82             scanf("%d",&a[i]);
     83 
     84         build(1,1,n);
     85         for(i=1;i<=q;i++)
     86         {
     87             scanf("%s %d %d",sre,&ql,&qr);
     88             if(sre[0]=='C')
     89             {
     90                 scanf("%d",&c);
     91                 update(1,1,n);
     92             }
     93             else
     94             {
     95                 printf("%d
    ",query(1,1,n));
     96             }
     97         }
     98     }
     99     return 0;
    100 }
    View Code

     64位

      1 #include <stdio.h>
      2 #include <string.h>
      3 #include <algorithm>
      4 using namespace std;
      5 
      6 long long a[100005],sum[450005],lazy[450005],c;
      7 int ql,qr;
      8 
      9 void down(int o,int l,int r)
     10 {
     11     if(lazy[o]!=0)
     12     {
     13         int mid=(l+r)/2;
     14         lazy[o*2]=lazy[o*2]+lazy[o];
     15         lazy[o*2+1]=lazy[o*2+1]+lazy[o];
     16         sum[o*2]=sum[o*2]+lazy[o]*(mid-l+1);
     17         sum[o*2+1]=sum[o*2+1]+lazy[o]*(r-mid);
     18         lazy[o]=0;
     19     }
     20 }
     21 
     22 void up(int o)
     23 {
     24     sum[o]=sum[o*2]+sum[o*2+1];
     25 }
     26 
     27 void build(int o,int l,int r)
     28 {
     29     if(l==r)
     30     {
     31         sum[o]=a[l];
     32         return;
     33     }
     34     int mid=(l+r)/2;
     35     build(o*2,l,mid);
     36     build(o*2+1,mid+1,r);
     37     up(o);
     38 }
     39 
     40 void update(int o,int l,int r)
     41 {
     42     if(ql<=l && qr>=r)
     43     {
     44         lazy[o]=lazy[o]+c;
     45         sum[o]=sum[o]+c*(r-l+1);
     46         return;
     47     }
     48     down(o,l,r);
     49     int mid=(l+r)/2;
     50     if(ql<=mid)
     51         update(o*2,l,mid);
     52     if(qr>mid)
     53         update(o*2+1,mid+1,r);
     54     up(o);
     55 }
     56 
     57 long long query(int o,int l,int r)
     58 {
     59     if(ql<=l && qr>=r)
     60     {
     61         return sum[o];
     62     }
     63     down(o,l,r);
     64     int mid=(l+r)/2;
     65     long long ans=0;
     66     if(ql<=mid)
     67         ans=ans+query(o*2,l,mid);
     68     if(qr>mid)
     69         ans=ans+query(o*2+1,mid+1,r);
     70     up(o);
     71     return ans;
     72 }
     73 
     74 int main()
     75 {
     76     int n,q,i;
     77     char sre[10];
     78     while(scanf("%d %d",&n,&q)!=EOF)
     79     {
     80         memset(sum,0,sizeof(sum));
     81         memset(lazy,0,sizeof(lazy));
     82         for(i=1;i<=n;i++)
     83             scanf("%lld",&a[i]);
     84         build(1,1,n);
     85         for(i=1;i<=q;i++)
     86         {
     87             scanf("%s %d %d",sre,&ql,&qr);
     88             if(sre[0]=='C')
     89             {
     90                 scanf("%lld",&c);
     91                 update(1,1,n);
     92             }
     93             else
     94             {
     95                 printf("%lld
    ",query(1,1,n));
     96             }
     97         }
     98     }
     99     return 0;
    100 }
    View Code
  • 相关阅读:
    YYControls
    JMS基础教程
    .NET牛人应该知道些什么?
    我(zhangxz)的博客园
    Java多线程 sycronize - wait -notify - notifyall
    .NET牛人应该知道些什么_答案(本答复不是标准答案,敬请兄弟们补充更正)
    HDU OJ 动态规划46题解析
    HDU OJ分类
    JS生成二维码
    C# 往Datatable中添加新行的步骤
  • 原文地址:https://www.cnblogs.com/cyd308/p/4743434.html
Copyright © 2020-2023  润新知