• 多校3 1002 RGCDQ


    RGCDQ

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 323    Accepted Submission(s): 162


    Problem Description
    Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
     
    Input
    There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
    In the next T lines, each line contains L, R which is mentioned above.

    All input items are integers.
    1<= T <= 1000000
    2<=L < R<=1000000
     
    Output
    For each query,output the answer in a single line. 
    See the sample for more details.
     
    Sample Input
    2 2 3 3 5
     
    Sample Output
    1 1
     
    Source
     
    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5326 5325 5324 5323 5322 
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<math.h>
      4 
      5 int a[1000050],b[1000000],k,f[1000050],s[1000050][10];
      6 
      7 int Sieve(int n)
      8 {
      9   a[1]=0;k=0;a[0]=0;
     10            for (int i = 2; i <= n; i++)
     11                 a[i] =1;
     12            for (int i = 2; i <= sqrt(n); i++)
     13            {
     14                if (a[i])
     15                    for (int j = i; j*i <=n; j++)
     16                         a[j * i] = 0;
     17            }
     18            for (int i = 0; i <= n; i++)
     19            {
     20                if (a[i]==1)
     21                {
     22                     k++;
     23                     b[k]=i;
     24                }
     25            }
     26 }
     27 
     28 int gcd(int a,int b) 
     29 { 
     30     if(a<b) 
     31         return gcd(b,a); 
     32     else if(b==0) 
     33         return a; 
     34     else
     35         return gcd(b,a%b); 
     36 } 
     37 
     38 int main()
     39 {
     40     int T;
     41     int i,j,k;
     42     Sieve(1000000);
     43     memset(f,0,sizeof(f));
     44     for(i=2;i<=1000000;i++)
     45     {
     46         int x=i;
     47         k=1;
     48         while(1)
     49         {
     50           if(x==1)
     51           {
     52             break;
     53           }
     54           if(a[x]==1)
     55           {
     56             f[i]++;
     57             break;
     58           }
     59 
     60           if(x%b[k]==0)
     61           {
     62             f[i]++;
     63             while(x%b[k]==0)
     64             {
     65               x=x/b[k];
     66             }
     67           }
     68           k++;
     69         }
     70         //printf("%d ",f[i]);
     71     }
     72     memset(s,0,sizeof(s));
     73     for(i=1;i<=1000000;i++)
     74     {
     75       for(j=1;j<=7;j++)
     76         s[i][j]=s[i-1][j];
     77       s[i][f[i]]++;
     78     }
     79     scanf("%d",&T);
     80     int l,r;
     81     int num[15];
     82     while(T--)
     83     {
     84         memset(num,0,sizeof(num));
     85         scanf("%d %d",&l,&r);
     86         for(i=1;i<=8;i++)
     87           num[i]=s[r][i]-s[l-1][i];
     88         int ma=0;
     89         for(i=10;i>=1;i--)
     90         {
     91           if(num[i]>0)
     92           {
     93             if(num[i]>=2)
     94             {
     95               if(i>ma)
     96                 ma=i;
     97             }
     98             else
     99             {
    100               for(j=i-1;j>=1;j--)
    101               {
    102                 if(num[j]>0)
    103                   if(gcd(i,j)>ma)
    104                     ma=gcd(i,j);
    105               }
    106             }
    107 
    108           }
    109         }
    110         printf("%d
    ",ma);
    111     }
    112     return 0;
    113 }
    View Code
  • 相关阅读:
    欧几里德算法实现求两个正整数的最大公因子
    C#委托、泛型
    C与C++中的time相关函数(转载)
    【转】温州的南拳
    前端面试题
    vuecli卸载旧版,再重新安装后还显示的是旧的版本
    不定宽高的div水平、垂直居中问题
    解决JS中取URL地址中的参数中文乱码
    移动vue项目,启动错误:Module build failed: Error: No PostCSS Config found in:
    codeblocks colour theme
  • 原文地址:https://www.cnblogs.com/cyd308/p/4684204.html
Copyright © 2020-2023  润新知